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Dedicated to the Memory of

Stephen B. Fels

Steve in the Colorado Rockies, 1986.

This report is dedicated to the memory of Stephen B. Fels, a key member of the Ozone

Trends Panel, a senior scientist at the Geophysical Fluid Dynamics Laboratory/NOAA, and a

Lecturer with Rank of Professor at Princeton University.

Steve was a central figure in many of the discussions on critical aspects of this Report's

conclusions and the evidence supporting them. In particular his deep scientific insights provided

essential input toward resolving the serious discrepancies between the apparent trends of ozone

and temperature in the upper stratosphere over the past decade. Without his analysis (and some

gratifyingly reliable satellite temperature data), the report's conclusions would have been far less
robust.



It is a personalprivilegeto beableto offer this tribute to Steve'simpactuponhis wide
circle of scientific colleagues. First and foremost, Steve was a relentless advocate and devotee

of fundamental scientific rigor. He had little use for flimsy handwaving as a substitute for

definitive scientific analysis. Conversely though, he had a remarkable ability to initiate and

engage in freewheeling, interactive discussions on a prodigious range of scientific (as well as

political, economic, and social) problems. Hammering down (or shooting down) his and others'

new ideas defined his approach to research.

It was his rare combination of rigor, knowledge, and openness that led to the evolution

of Steve as my closest colleague, confidant, and critic. As colleagues, the two of us worked

directly together and taught a course together for more than a decade. As confidant, he was the

one I first sought out for independent and frank evaluation of many decisions and management

issues that plagued me. As a critic, he most likely was not my severest. Almost uniquely,

however, his points of disagreement were always completely made known to me. He once said

to me after I was "promoted" to management, "I insist on still treating you with the same

healthy disrespect you deserve." In his always humorous way, he had that exactly right. I may

or may not have "deserved" such a level of unfiltered frankness, but I consider it to have been

a gift of priceless value to me.

I submit that it was Steve's combination of rigor, knowledge, frankness, and love of

science that made him such an invaluable colleague to the wide range of scientists that knew

him, debated with him, and worked with him. I would also submit that these attributes were

cemented into something special by his irrepressible sense of humor. Even the most serious of

tensions were frequently defused by his humorous comments, invariably peppered by his

impeccable linguistic touch.

Because of these things and more, it is singularly appropriate that this report be dedicated

to Stephen Fels. Those of us who knew him have become deeper, more creative, and more

honest scientists simply because he was with us for that brief interval. I know I speak for many

friends and collegues when I say that Steve was a special and irreplaceable friend whose absence

I still feel every day.

Jerry D. Mahlman
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INTRODUCTION

1.0 INTRODUCTION

1.1 BACKGROUND

For more than a decade, scientists have postulated that manmade pollutants, primarily

chlorofluorocarbons and halons, could reduce the amount of stratospheric ozone and hence

increase the amount of ultraviolet radiation reaching Earth's surface. Consequently, it is

recognized that the ozone layer must be protected in order to protect human health and aquatic
and terrestrial ecosystems from damage due to enhanced levels of ultraviolet radiation.

Many governments around the world have now acknowledged that the use of chlorine

(chlorofluorocarbons [CFC's])- and bromine (halons)-containing chemicals constitutes a poten-

tial threat to the stability of the ozone layer and, hence, to human health and ecosystem

productivity. More than 20 nations signed the Vienna Convention for the Protection of the

Ozone Layer in Vienna, Austria, in March 1985, and the Montreal Protocol on Substances That

Deplete the Ozone Layer, in Montreal, Canada, in September 1987. The Vienna Convention and
the Montreal Protocol both call for all regulatory decisions to be based on a scientific under-

standing of the issues. Thus, timely international scientific assessments are needed as a basis for

policy formulation when important new information becomes available, as has occurred since

the last major international scientific assessment (WMO, 1986).

In 1985, two important reports of changes in atmospheric ozone were released. The first

report was of a large, sudden, and unanticipated decrease in the abundance of springtime
Antarctic ozone over the last decade. The second report, based on satellite data, was of large

global-scale decreases since 1979 in both the total column content of ozone and in its con-
centration near 50 km altitude. Data from the ground-based Dobson network also indicated that

the total column content of ozone had decreased on a global scale significantly since 1979,

although to a lesser extent than suggested by the satellite data. Further, there has been a

significant amount of new research focussed on understanding the extent and cause of the

depletion of ozone in the springtime over the Antarctic.

In October 1986, the National Aeronautics and Space Administration (NASA), in col-

laboration with the National Oceanic and Atmospheric Administration (NOAA), the Federal

Aviation Administration (FAA), the World Meteorological Organization (WMO), and the United

Nations Environment Program (UNEP), formed an Ozone Trends Panel, which involved more

than 100 scientists, to study the question of whether carefully re-evaluated ground-based and

satellite data would support these findings. This report critically assesses our present knowledge
of whether the chemical composition and physical structure of the stratosphere have changed

over the last few decades and whether our current understanding of the influence of natural

phenomena and human activities is consistent with any observed change. This report is different
from most previous national and international scientific reviews in that the published literature

was not simply reviewed, but a critical reanalysis and interpretation of nearly all ground-based

and satellite data for total column and vertical profiles of ozone was performed. To aid in the

interpretation of the results of this reanalysis, a series of theoretical calculations was performed

for comparison with the reanalyzed ozone data. In addition, a uniform error analysis was

applied to all the data sets reviewed that contained information on the vertical ozone
distribution.

The Report of the International Ozone Trends Panel covers Spacecraft Instrument Calibration and
Stability; Information Content of Ozone Retrieval Algorithms; Trends in Total Column Ozone
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INTRODUCTION

Measurements; Trends in Ozone Profile Measurements; Trends in Stratospheric Temperature;

Theory and Observations; Trends in Source Gases; Trends in Stratospheric Minor Constituents;
Trends in Aerosol Abundances and Distributions; Observations and Theories Related to An-

tarctic Ozone Changes; and Statistical Approaches to Ozone Trend Detection.

1.2 KEY FINDINGS

1.2.1 Source and Trace Gases

There is undisputed observational evidence that the atmospheric concentrations of source

gases important in controlling stratospheric ozone levels (chlorofluorocarbons, halons, meth-
ane, nitrous oxide, and carbon dioxide) continue to increase on a global scale because of human

activities.

1.2.2 Global Ozone

Calculations using two-dimensional photochemical models predict that increasing atmo-

spheric concentrations of trace gases would have caused a small decrease in ozone globally
between 1969 and 1986. Predicted decreases between 30 and 60 degrees latitude in the Northern

Hemisphere for this period ranged from 0.5 to 1.0 percent in summer and 0.8 to 2.0 percent in
winter, where the range reflects the results from most models.

Analysis of data from ground-based Dobson instruments, after allowing for the effects of

natural geophysical variability (solar cycle and the quasi-biennial oscillation [QBO]), shows
measurable decreases from 1969 to 1986 in the annual average of total column ozone ranging

from 1.7 to 3.0 percent, at latitudes between 30 and 64 degrees in the Northern Hemisphere. The

decreases are most pronounced, and ranged from 2.3 to 6.2 percent during the winter months,
averaged for December through March, inclusive. Dobson data are not currently adequate to

determine total column ozone changes in the Tropics, sub-Tropics, or Southern Hemisphere
outside Antarctica.

The model calculations are broadly consistent with the observed changes in column ozone,

except that the mean values of the observed decreases at mid- and high latitudes in winter are

larger than the mean values of the predicted decreases. The observed changes may be due

wholly, or in part, to the increased atmospheric abundance of trace gases, primarily CFC's.

Satellite instruments on Nimbus-7 (Solar Backscatter Ultraviolet [SBUV] and Total Ozone

Mapping Spectrometer [TOMS]) have provided continuous global records of total column ozone
since October 1978. Unfortunately, they suffer from instrumental degradation of the diffuser

plate, the rate of which cannot be uniquely determined. Thus, the data archived as of 1987 cannot
be used alone to derive reliable trends in global ozone.

The SBUV and TOMS satellite data have been normalized by comparison with nearly

coincident ground-based Dobson measurements in the Northern Hemisphere. The resulting
column ozone data, averaged between 53°S and 53°N latitudes, show a decrease of about 2 to 3

percent from October 1978 to October 1985. This period is approximately coincident with the
decrease in solar activity from the maximum to the minimum in the sunspot cycle.

Theoretical calculations predict that the total column ozone would decrease from solar

maximum to solar minimum by an amount varying between 0.7 and 2 percent depending upon
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the model assumed for solar ultraviolet variability. Thus, the observed decrease in ozone from
the satellite data between late 1978 and late 1985 is predicted to have a significant contribution

from the decrease in solar activity during this period.

Theoretical calculations predict that local ozone concentrations near 40 km altitude should

have decreased between 1979 and 1985 by 5 to 12 percent in response to the decrease in solar

ultraviolet output and the increased atmospheric abundance of trace gases. This range repre-

sents the decreases predicted from the different models for the latitude belt 30°N to 60°N for all
seasons.

Analyses of satellite (SAGE) and ground-based (Umkehr) data taken since 1979 show small
decreases in ozone concentrations; these decreases peak near 40 km altitude with mean values of

3 and 9 percent, respectively. These observational values agree within the range of their errors.

Stratospheric temperatures between 45 and 55 km altitude have decreased globally by about

1.7K since 1979, consistent with decreases in upper stratospheric ozone of less than 10 percent.

Thus, this assessment does not support the previous reports based on SBUV and TOMS data

of large global decreases since 1979 in the total column of ozone (about I percent per year) or in
the ozone concentration near 50 km altitude (about 3 percent per year). These reports used data

archived as of 1987, and the trends obtained were erroneously large because of unjustified and

incorrect assumptions about the degradation of the diffuser plate common to both the SBUV and
TOMS satellite instruments.

1.2.3 Antarctic Ozone

There has been a large, sudden, and unexpected decrease in the abundance of springtime
Antarctic ozone over the last decade. Ozone decreases of more than 50 percent in the total

column, and 95 percent locally between 15 and 20 km altitude have been observed.

The total column of ozone in the austral spring of 1987 at all latitudes south of 60°S was the

lowest since measurements began 30 years ago.

In 1987, a region of low column ozone over Antarctica lasted until late November-early

December, which is the longest since the region of low ozone was first detected.

While the column ozone depletion is largest in the Antarctic springtime, ozone appears to
have decreased since 1979 by 5 percent or more at all latitudes south of 60°S throughout the year.

The unique meteorology _during winter and spring over Antarctica sets up the special

conditions of an isolated air mass (polar vortex) with cold temperatures required for the observed

perturbed chemical composition.

The weight of evidence strongly indicates that manmade chlorine species are primarily

responsible for the observed decrease in ozone within the polar vortex.

5
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INSTRUMENT CALIBRATION AND STABILITYj-

2.1 INTRODUCTION

The advent of artificial Earth satellites has created great possibilities for remotely sounding

the atmosphere on a global basis. Ozone was one of the first gases to be proposed for

measurement in this way. Its strong and distinct spectral features in the ultraviolet (UV), visible,

and infrared (IR) portions of the spectrum, combined with its abundance and distribution, make

it a relatively easy gas to detect, and offer the hope of accurate quantitative measurements. Since

then, a large number of ozone-measuring experiments has been flown.

The great advantage of regular global observations from satellites is that they provide good

information on spatial and short-term temporal variations, and thus allow entirely new types of

problems to be addressed. However, soon after the first sounders flew, concern began to be

expressed that human activities or natural causes might result in long-term changes in the
amount of ozone in the stratosphere. Consequently, attempts have been made to use these

sounders to measure long-term changes.

The purpose of this chapter is to review the instruments and techniques that provide the most
information on ozone trends, to assess the evidence on the stability of the instrumental

calibration, and to reach conclusions on the uncertainties to be associated with any reported

trends. Although the Working Group relied heavily on the various experimenters, and could not
have done its work without their cooperation, it has attempted to reach independent conclusions
and estimates of the errors in the trend determinations.

The trend measurement problem is fraught with great difficulty. In general, when one is

interested in trends, it is not the absolute accuracy but the stability of the instrument that is

important. However, the measurements must be made over long periods of time in a hostile

environment, with no chance to check the instrument in detail or to readjust it. Two strategies for

making long-term measurements immediately suggest themselves: making the results insen-

sitive to instrument change, by, for instance, using a ratio technique, or incorporating an in-orbit

calibration procedure. Various experiments have used one or both of these approaches.

Different instruments, especially those employing different techniques, generally have

different systematic errors. Therefore, it is usually not possible to use measurements by two
instruments operating at different times to derive a reliable trend. (It may be possible, however,

if the two instruments are very similar and individually reliable.) A discussion of trends, then,

must concentrate on those instruments having data records long enough to provide an indi-
cation that stands out above seasonal and natural fluctuations. These records must be considered

along with others that are simultaneous with them, thereby providing a check on them, or

insight into their features.

Figure 2.1 plots the time of operation of several ozone sounders that meet these criteria. They

begin with the launch of the Solar Backscatter Ultraviolet/Total Ozone Mapping Spectrometer
(SBUV/TOMS) and Limb Infrared Monitor of the Stratosphere Spectrometer (LIMS) on

Nimbus-7 late in 1978, and continue to 1987. SBUV measured ozone profiles, while SBUV and

TOMS determined total ozone amounts, over virtually the entire period, and thus are central to

this discussion. Stratospheric Aerosol and Gas Experiment (SAGE)-I and -II are two very similar

instruments, each with an appreciable data record. The two instruments on the Solar Meso-

spheric Explorer (SME) also have appreciable data records, although their altitude coverage does

not greatly overlap that of the others. LIMS has the shortest data record, but has high vertical

resolution coupled with temporal and spatial detail. All of these use different measurement

11
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Figure 2.1
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techniques than do SBUVFFOMS. SBUV-2 is a National Oceanic and Atmospheric Agency

(NOAA) operational version of the SBUV that began collecting data in 1985. However, even with

the urgency of this assessment, NOAA has not yet reduced any of the data in a way that would

allow comparison with the SBUV results. The SBUV-2 data could have provided an extremely

important check on the degradation of the SBUVFFOMS diffuser plate, and indicated ozone
trends.

The focus here has been entirely on the internal evidence from the instrument and its test

procedures. Ground-based measurements could also serve as a check on calibration changes;

this will be discussed in Chapters 4 and 5.

This assessment was greatly assisted by the considerable efforts of several experiment groups

to study and reprocess their data to enhance their applicability to trend studies. The SAGE data

were reprocessed to take advantage of improvements developed for SAGE-II processing.

Similarly, the SME-UVS (ultraviolet spectrometer) and near infrared (NIR) instruments did

extensive reanalysis of errors and data reprocessing. Additionally, the TOMS data were repro-

cessed using new absorption coefficients.

Because of the length of the data record, amount of data, and visibility of the results, more

attention was focused on the SBUV experiment than on the others. Additionally, it lent itself to

further analysis. However, all experiments were examined critically.

This chapter begins with a general outline of the mechanisms that can cause the performance

of a satellite instrument to change with time. Subsequently, Sections 2.3-2.7 discuss each of the

relevant techniques and instruments, followed by a review of the evidence for any change of

response in orbit, an assessment of its magnitude, and a summary of conclusions about the

capabilities of the various instruments. Four instruments that were briefly considered are
reviewed in Section 2.8. The last section (2.9) summarizes the conclusions about the ability of the
various instruments to determine trends.
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2.2 INSTRUMENT DEGRADATION

The fact that the performance of optical instruments changes with time is a well-known

phenomenon, both in the laboratory and in space. Overwhelmingly, these changes lead to

reduced performance. The causes for the degradation are many, and are discussed in greater
detail below:

• Contamination of optical surfaces by thin films.

• Aging of the optical surface of mirrors, diffraction gratings, etc.

• Changes in the transmission of lenses, plates, etc.

• Detector changes.

• Movement or separation of optical elements.

2.2.1 Contaminant Film Formation

The formation of thin films on optical surfaces that are irradiated with ultraviolet radiation is

well known in the laboratory, particularly in vacuum systems that use oil pumps and oil

diffusion pumps. Much research has been carried out on the nature of the films, and the

consensus is that the films arise from the dissociation of oil molecules on the surface of the optical

component when it is irradiated (see, e.g., Osantowski, 1983). Figure 2.2 shows the result of

exposing an uncoated aluminum surface to 123.6 nm radiation in a vacuum system pumped with
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Figure 2.2 Reflectivity as a function of wavelength for uncoated aluminum surfaces, one of which was
exposed to an oil-pumped vacuum system, and the other (control sample) not.
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oil pumps• There is a considerable change in the reflectivity of the surface even at the longer

wavelengths. In some cases, the oil is deposited on the surface in the form of droplets, and then
broken down by solar radiation (Figure 2.3). However, the work of Hunter (1977) indicates that

the original droplets evaporate quickly if not irradiated• Thus, it is unlikely that an oil film will

retain its integrity on a surface in a hard vacuum for longer than a few days.

Figure 2.4 shows results from the SCATHA spacecraft, which carried two quartz micro-

balances. One of the balances was exposed to the solar irradiance, while the other was not. One

can see from this figure that the sunlit sensor shows a steady increase of mass accumulation with
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Figure 2.3 Effect of UV irradiation on evaporated DC 705 oil. The effective layer thickness is _200A,
evaporated onto an aluminum surface coated with MgFa (enlarged 700 times).
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time while the shadowed balance shows much less of an increase. It is significant, however, that

it does show a slight increase, although this could be due to scattered sunlight. The solar

wavelengths that can produce the film need not be at the high energies. Figure 2.5 shows the

likely points at which the bonds could be broken in the methyl phenyl siloxane (silicon rubber)

molecule. The energies correspond to wavelengths in the near ultraviolet.

In the laboratory, the deposited film has many of the characteristics of a carbon film. Figure

2.6 shows the change in the reflectivity at 270 nm for an uncoated oxidized aluminum surface

versus the thickness of a carbon film deposited on the surface. It is unlikely, however, that any
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Figure 2.5 Bond energy of likely breaks of methyl phenyl siloxane (silicone rubber).
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Figure 2.6 Reflectance at 270 nm of an uncoated oxidized aluminum plate as a function of the thickness of a
carbon film deposited on its surface.
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film deposited in space would be only carbon. The exact nature of the contaminant film will

depend on the parent molecule or, in the case of a spacecraft environment, on several parent
molecules.

Flight instruments and spacecraft contain many sources of contamination. Potting com-
pounds, conformal coatings, insulation blankets, and attitude control gases are only a few of the

possibilities. For most satellite launches, including Nimbus-7, the spacecraft is allowed to outgas
for a few days after launch before the instruments are turned on; this should eliminate some of

the surface contaminants. However, those sources of contaminants that are deeply rooted in the
instruments or spacecraft will take much longer to outgas, and the traditional view that the

outgassing will fall off exponentially with time may not hold (or the time constant may be very
long).

2.2.2 Aging of Optical Surfaces

Most optical surfaces when incorporated into flight instruments have had a short history of
exposure to radiation. There is considerable evidence that uncoated aluminum surfaces continue

to lay down a protective layer of aluminum oxide, thus changing the optical properties of the

surface. There is some evidence that the surface of replica diffraction gratings flows and changes

the reflective properties of the grating. In general, it is usually incorrect to assume that optical
surfaces will retain their original properties.

2.2.3 Changes in the Optical Transmission of Lenses, Filters, Etc.

The optical properties of transparent lenses, filters, windows, etc., can change as a result of

exposure to radiation. These changes have many causes. Lithium fluoride and magnesium
fluoride, for example, form color centers when exposed to ultraviolet radiation.

2.2.4 Detector Changes

Changes in detector response are one of the most common causes of changes in overall

instrument responsivity. For this reason, most instruments have some method of monitoring the

detector response. For the photomultipliers used in the experiments critiqued, one might expect
to encounter:

° Changes in the window transmission.

• Changes in the cathode response.

• Changes in the dynode response. This is coupled with changes in the bleeder voltages to
produce changes in the overall gain of the photomultiplier.

• Changes in the electronics.

2.2.5 Movement or Separation of Optical Components

Wearing of the surfaces of grating drive cams, dimension changes due to temperature
fluctuations, and relaxation of stressed components are but a few of the mechanical instrument

changes that could lead to changes in the optical response of instruments. For example, the

SBUV instrument uses a quartz depolarizer at the entrance slit. This consists of a set of thin plates

under tension in a holder, with the interfaces filled with an adhesive. During recent tests on one
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of the SBUV-2 instruments, the plates were observed to move with respect to one another under
thermal stress.

2.3 THE SOLAR BACKSCATTER ULTRAVIOLET (SBUV) EXPERIMENT

2.3.1 Physical Principles

Absorption of sunlight in the Hartley bands and continuum of ozone produces a complete
attenuation at Earth's surface of solar radiation between 200 and almost 300 nm. (For a discussion

of the spectroscopy of this spectral region, see Brasseur and Solomon, 1984, or Craig, 1965.)

Thus, it is not possible to use ground-based absorption spectroscopy of this band system.

Absorption spectroscopy is possible in the longer wavelength Huggins and Chappuis bands, but
this technique does not provide any information about the vertical distribution of the ozone in

the atmosphere. However, since ozone is a minor atmospheric constituent, unit optical depth for

absorption in the Hartley continuum occurs at altitudes (wavelength dependent) where sig-

nificant Rayleigh backscattering of sunlight occurs (despite the seven-order-of-magnitude dif-

ference in cross-section). Singer and Wentworth (1957) suggested that observations from above

the atmosphere, in which the fraction of sunlight reflected back to space (the planetary albedo) is

measured as a function of wavelength, could be used to deduce the concentration of ozone as a

function of altitude. This is the principle of the SBUV experiment that flew on Nimbus-7. Other

experiments utilizing the same principle have flown on Kosmos-65, OGO-4, Nimbus-4, Atmo-

sphere Explorer-D, and, most recently, TIROS-9 and the Japanese Exos-C. Mathematically, the

expression for the backscattered signal can be written as

I(A) = Fo(A)A[X(p),a(A),fl(A),qd#o), R(A)] (1)

where I(A) is the observed backscattered radiance at wavelength A, Fo is the solar irradiance,

andA is the albedo of the atmosphere and surface. This latter depends, as indicated, on X(p), the

total amount of ozone above a level where the pressure is p, the ozone absorption coefficient a,

the Rayleigh scattering coefficient fi, the Rayleigh phase function 6 for the solar zenith angle

whose cosine is/_0, and the surface reflectivity R. The full expression is given in Chapter 3

(Algorithms).

It was recognized from the outset that this technique was intrinsically capable of very high
accuracy and stability, since the requirement was for a relative measurement of the ratio of
Earth's backscattered UV radiance I(A) to the solar UV irradiance F0(A) at the same wavelength.
Because both measurements could be made with the same instrument, the determination of

albedo as a function of wavelength over the range 250-340 nm should not depend on either the
absolute calibration of the instrument nor on long-term variations in the sensitivity of the
instrument.

However, for the SBUV, a major uncertainty is introduced by the use of an optical component

not common to both measurements--the diffuser plate--which is used to transform the solar

flux (irradiance) into a radiance that is comparable in magnitude to the backscattered Earth

radiance, and can be measured instrumentally in exactly the same manner.

The extraction of the ozone profile, depends, then, on two factors: the precision and accuracy
of the relative measurement, and the algorithm used to retrieve the information from the

measured albedo. The second factor is treated in Chapter 3; the first is our principal concern in

this chapter.
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The SBUV experimenters recognized the need to achieve as high a measurement precision as

possible with the spectrometer, and have devoted much effort to controlling sources of sys-

tematic error (e.g., polarization, scattered light, short-term gain changes, etc.). They have also

taken care with the absolute calibration procedures, in part to properly address a secondary goal

of the SBUV experiment, the long-term monitoring of variability of the solar UV irradiance at the

top of Earth's atmosphere. The long-term behavior of the diffuser plate in the Nimbus-7 SBUV

instrument remains a crucial area of concern for the evaluation of long-term trends of both ozone
and solar irradiance.

The diffuser plate on the earlier Nimbus-4 Backscatter Ultraviolet (BUV) experiment was

continually exposed to space, and its reflectivity decreased rapidly. In order to prevent this, the

SBUV diffuser was designed to be stored inside the instrument, in a protected position, and

deployed only when a measurement of the solar irradiance was made, which was usually once

per day.

The plan for maintaining long-term stability was not stated explicitly, but appears to have

been based on a belief that the degradation would be slow enough to be negligible. There is no

provision for measuring any change of diffuser reflectivity in orbit.

The more recent operational version of SBUV, SBUV-2 (Frederick et al., 1986) has included a

reference mercury lamp for evaluating the behavior of the diffuser plate with time. However, to

provide a useful calibration, the lamp or other elements that direct its output to the diffuser and

spectrometer must be positioned very repeatably, frequently over a long period of time. In

addition, the lamp output must be stable over the time period when it illuminates successively
the instrument and the diffuser. These conditions were not met for the first SBUV-2 instrument,

and the inflight calibration has not been useful. Design changes have been made in an attempt to

obtain reliable inflight calibrations on future versions of the SBUV-2 (see also Section 2.8.2).

2.3.2 Instrument

Descriptions of the instrument, together with diagrams, are given in Heath et al. (1975 and
1978, referred to below as User's Guide UG). For ease in following this discussion, a schematic is

presented in Figure 2.7. The basic optical system consists of two Ebert-Fastie monochromators

used in a double monochromator arrangement to provide twice the dispersion of a single

instrument. The use of two monochromators in series, together with a holographically produced

diffraction grating, ensures a very low level of instrumental scattering (<10 -9) in order to

eliminate the possibility of contamination of radiance measurements near 250 nm by more

intense long-wavelength (400 nm and longer) scattered light in the instrument. The wavelengths
used for ozone measurements are, in nm, 255.5, 273.5, 283.0, 287.6, 292.2, 297.5, 301.9, 305.8,

312.5, 317.5, 331.2 and 339.8. The channel at 255.5 nm was measured, but not used because of

fluorescence by NO. The next seven are used for extracting profile information, while the latter

four are for determining total ozone. The methods by which the ozone profiles and column

amounts are retrieved are described in the next chapter.

Another important feature is the use of a depolarizer at the entrance slit to remove the

polarization sensitivity of the monochromator to the Rayleigh backscattered radiation. The

diffuser plate, used to view the Sun (the field of view FOV of the instrument is normally directed
toward the nadir for Earth radiance measurements) is a ground aluminum plate that is rotated
into the FOV for the solar measurements.
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Figure 2.7 Schematic diagram of the SBUV instrument (from Heath et al., 1975).

The various operating modes of the instrument are also described in UG. Unfortunately,

much of the material in UG and other reports is not available in the refereed literature, and in any
case is difficult to obtain. This lack of available documentation was a serious problem in this

investigation.

2.3.3 Prelaunch Calibration

The plan for prelaunch calibration is outlined in UG. Basically, various spectral irradiance
sources, traceable to the National Bureau of Standards (NBS), were used, together with several

diffusing screens, to produce a source of known radiance as a function of wavelength. The

different diffusing screens were both intercompared and measured independently at NBS. The
solar irradiance mode is similarly calibrated using the flight diffuser, except that for the spectral

region <200 nm, the tests require a clean vacuum system (this region is of no interest for
evaluating ozone trends). It should be noted that the quoted uncertainty in the absolute

calibration, which is -3-11 percent using NBS-traceable sources (Heath, private communica-

tion, 1987) is considerably larger than the measurement precision (<1 percent) achieved by the
instrument itself, which is a measurement only of the reproducibility of a given measurement. In

addition, there are two other critical calibration requirements: wavelength knowledge and

reproducibility (the grating is coupled to the motor drive through a stepped cam), and electronics

system linearity. The prelaunch tests for these parameters are also given in UG. Provisions for

inflight calibration checks of the wavelength drive, detector, and the electronics are also
described there.

All of the calibrations were performed at Beckman Instruments prior to the thermal-vacuum

(T/V) testing that was done at General Electric. One of the goals of the T/V test was to determine
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the stability of the instrument after repeated temperature cycles that simulate the expected

environment in space. Following these tests, the absolute calibration of the spectrometer was

checked at the T/V test site and was found to have changed by -11 percent in the wavelength

band 270-290 nm, 6 percent at 294 nm, 10 percent at 306 nm, and 7 percent at 315 nm and longer.
The diffuser plus spectrometer calibration varied similarly with wavelength, so that the albedo

change was -3.5 percent at all wavelengths. This effect introduces an uncertainty of up to 8

percent in the solar output in the 270-290 nm band.

The launch schedule precluded any further measurements to determine possible sources of

the change or even a recalibration using the same equipment that was used for the detailed

prelaunch calibration. The post-T/V data were used for the initial flight calibration. While the

change in absolute calibration does not affect the retrieval of trends in ozone profiles or column
amounts, it does lay open the possibility of an undetected change of a similar nature occurring

between the post-T/V test and operations in space. During the 7 years of operation of the

instrument in orbit, a sudden change of 2 percent would probably be detected. A slow change
would be treated as discussed below.

2.3.4 Results in Orbit

The SBUV was launched on Nimbus-7 on October 24, 1978, into a Sun-synchronous polar

orbit. The instrument initially operated 3 out of 4 days, beginning on October 31, 1978, and
provided an average of 1,200 sets of measurements per day. The observations cover the daylight

portion of the globe, and are made close to local noon, except in polar regions. Solar measure-

ments were initially made on one orbit per day, for a period of about 4 minutes.

The most crucial in-orbit observations for the present discussion are those of the time history

of the results of the solar observations, shown in Figure 2.8a,b. At all wavelengths, they show a

decrease in instrument response with time, with four episodes of rapid decrease interspersed
with longer periods of slower decrease. The effect is larger at the shorter wavelengths, reaching a

total decrease of about 50 percent after 8 years. There does not appear to be any possibility that

more than a small part of this at the shorter wavelengths can be due to changes of the solar

output. The response of the spectrometer-diffuser to solar radiation seems to have degraded

over the life of the experiment.

The second observation of interest to the question of instrument change is that the response

of the photomultiplier tube (PMT) detector changed by about 9 percent relative to a photodiode
placed to serve as a check on any PMT changes over the period 1978-1983.

2.3.5 Possible Mechanisms Leading to Change in SBUV Instrument Response During the
Mission

In general, instrument response change during orbit will be due to changes in the detection

systems (electronics and detector) or in the optical system--including the optical elements, their

alignment, and proper deployment (see Section 2.2). This section will point out the large number
of mechanisms that are likely sources of change in the SBUV response; it should also discourage

us from believing simplistic models of instrument degradation in the absence of independent
data. Here we consider how these potential sources of change may affect the response of SBUV.
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Detection System

SBUV did not have on board a constant current source often provided (as on TOMS) to check

the performance and gain of the amplifier electronics, nor did it have the capability to look at the

current from the first dynode of the PMT, which would allow monitoring the gain of the PMT.

Rather, SBUV relied on monitoring a "constant" fraction of the light leaving the spectrometer exit

slit with a reference vacuum photodiode. On the plus side, this method has the advantage of a

"systems" approach, testing the stability of the PMT photocathode response, as well as,

simultaneously, the gain of the PMT and the amplifier. On the negative side, it relies on the

stability of the optical systems used as well as the diode for its interpretation. The elements
involved are a mirror used to select about 10 percent of the light exiting the slit, a second mirror to

redirect the selected light to a vacuum diode, and the window and cathode of the diode. In

addition there is also a focusing mirror system used to relay the remaining light from the exit slit

to the PMT. Changes in the reflectance of any of these mirrors or in the transmission of the diode

window or the photoyield of the diode cathode could be misinterpreted as a change in gain of the

PMT/amplifier system.

A final factor in evaluating this monitor system is that the light sampled apparently comes
from a small portion of the exit slit. Since astigmatism in the spectrometer optical system is

reasonably small, the intensity distribution of light along the exit slit would be expected to be

proportional to the light distribution along the entrance slit. Any change in this distribution

would affect the monitor-to-signal ratio.

In the SBUV data reduction, a change in this monitor signal was interpreted as a gain change.

Clearly, this change could also have been due to changes in the relevant optics or the diode, or

the intensity distribution along the slit. In their analysis of the observed degradation effects, the

Ozone Processing Team (OPT), which is responsible for the operational reduction of SBUV and
TOMS data, concluded that a significant degradation of the spectrometer optics has taken place.

Thus, it would be logical to assume that some degradation in the detector optics has also taken

place, even if the diode is assumed to be completely stable. At least the assignment of the change

in monitor signal during the mission as a gain change of the PMT appears to be open to
reinterpretation. The effect of a change like this on the ozone trend cannot be quantified without

a model of the time history of the change, and of the instrument degradation. For the models
described in Section 2.3.6, the effects would probably be small.

Optical Systems

The optical system may be divided into the prespectrometer, spectrometer, and detector

(postspectrometer) optics. The prespectrometer optics consist of the reflective scatter (diffuser)

plate used in the irradiance measurement (but not in the backscatter radiance measurement),

and the depolarizer (used in both). The spectrometer optics consist of six mirror and two grating
reflectances in a double Ebert-Fastie mounting. The detector optics consist of a reflector focusing

field optic to image the second grating on a field stop in front of the PMT using one or two
reflecting surfaces. It should be reiterated at the outset that changes in the spectrometer will

affect both solar and ozone measurements, while changes in the diffuser will affect only the solar

measurements. However, unless there is a way to unambiguously separate a diffuser change

from a spectrometer change in orbit, one kind of change will almost certainly be misidentified,

leading to errors in ozone trends.
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Diffuser and Depolarizer The diffuser is a ground aluminum plate overcoated with

evaporated aluminum positioned as the first optical element of the SBUV instrument. The

second optical element, the depolarizer, consists of four appropriately oriented and tapered

layers of quartz. Since both elements are outside the spectrometer entrance slit, they can

receive more UV radiation and higher exposure levels to any contaminants in the vicinity of

the spacecraft. The diffuser is the only optical element exposed to the full solar irradiance

when deployed. To the extent that the solar radiation contributes to the degradation of the

instrument response, it is likely that the diffuser plate is responsible for most of this form of

decreased response. On the other hand, the depolarizer is exposed to reflected solar

radiation, especially at long wavelengths, for the Earth-viewing period, which is 25 times

longer. Even if the reflected solar radiation on the diffuser is only 1 percent of that on the
diffuser, its degradation is not negligible.

In the absence of solar exposure, the optical surfaces should have contamination layers that

are at equilibrium with the local low-pressure atmosphere surrounding the spacecraft.

Hydrocarbons deposited on a surface exposed to solar UV radiation tend to form strong

bonds with the surface and adjacent carbon atoms. The resulting film has a much lower

vapor pressure than the original hydrocarbons and so can gradually build up to a con-

siderable thickness at a rate that seems to be proportional to the UV exposure time (for

SBUV conditions). The buildup of a permanent film may or may not be proportional to the

deposition rate depending on how quickly equilibrium is established during the periods of

no solar exposure.

The presence of a film on the optical surfaces is likely to reduce the reflectance of the scatter

plate and, to a lesser extent, the transmission of the depolarizer. If the overall instrumental

response can be considered to be a product of the independent degradation of the

spectrometer and diffuser plate, then the effect of a film forming on the depolarizer is
eliminated when the instrument is used to determine ozone from the measured UV albedo.

That is, the effect of spectrometer degradation cancels when calculating the ratio of

backscattered radiance to solar irradiance (albedo). The problem is to be able to separate the

effects of the diffuser plate and spectrometer degradation when analyzing the measured
albedo.

If a thin film model of the SBUV diffuser plate degradation is correct, then certain

characteristics of the film (thickness, real and imaginary parts of the refractive index) must

be specified in addition to identifying its bulk characteristics. For example, it can be shown

that a nonuniform film thickness across the surface of the optical elements can have an

additional effect on the calculated degradation that is comparable to degradation from
uniform films of the same average thickness. The radiance-irradiance ratio may be a

complex function of the growth rate of a contaminating film of unknown bulk properties,

the known rate of solar exposure and total elapsed time since the spacecraft launch, the

known number and frequency of diffuser plate deployments, the unknown film geometry,

and possible unknown exposure-dependent effects on the depolarizer and other internal

spectrometer components. To some extent, the properties contributing to the degradation

can be characterized from a series of four experiments performed during 1980 to 1986

(so-called "frequent deployment" experiments), and from the long-wavelength measure-
ments of the radiance and irradiance.

Spectrometer and Detector Optics--The spectrometer optical system is a double mono-

chromator (Ebert-Fastie), which is a very good design for the reduction of scattered light.
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This feature is further enhanced by the field stop in the exit optics to confine radiation

reaching the detector to that coming from the second diffraction grating. Thus, only

scattering coming from the optical elements themselves can be seen by the detector. In

addition, holographic diffraction gratings that are known for low scattered light were
employed. The excellence of this overall design in reducing the dangers of scattered light in

UV solar measurements was demonstrated by preflight testing. There remains the hazard,

however, that the growth of contamination on the spectrometer optics over many years in

orbit can increase the scattering from the optical elements and contribute to spectral

impurity of the exiting radiation. Also, aging (deterioration of evaporated films) after this

long service and UV exposure is a possibility. Regardless of the scattering introduced by

contamination and aging of the optics of the spectrometer and detector systems, there is
little question that some reduction in specular reflectivity due to contaminants can be

expected. Since there are 9 or 10 reflections, a 1 percent average loss per element would

result in about a 10 percent overall transmission loss of the system. This "leverage" offsets

somewhat the lower level of short-wavelength irradiance existing on the optical elements

within the spectrometer. Thus, this is a serious probable change in instrumental response
for which there is no method of separate evaluation.

Other Deleterious Effects--Two other possible sources of change in instrumental response

should at least be mentioned. The first is the possible fluorescence of the contaminating
layers developing on the optical elements, excited by the UV component of the incident

radiation but fluorescing at longer wavelengths. A fluorescence signal from the diffuser or

polarizer would add to the intensity arriving at the entrance slit of the spectrometer at the

fluorescent wavelengths. Fluorescence from optical elements within the spectrometer
would appear similar to scattered light.

The second possibility relates to the unfortunate change in calibration that was discovered

after a thermal vacuum (T/V) test of the SBUV prior to launch. This significant change
(radiance 6-11 percent; irradiance 4-8 percent) was most likely due to some contamination

during the thermal vacuum test. Credit is due the determined Principal Investigator (PI)

who insisted on a post-T/V calibration, which unfortunately was a hurried in-the-field

evaluation of the instrument response. This final calibration necessarily was taken to be the

initial response of the SBUV in orbit. It is conceivable that some of the contamination that

occurred at this time was subject to "cleanup" during the initial flight exposure to high
vacuum before exposure to solar UV.

In conclusion, there are many possible sources of change of instrument response during
inflight life, with various effects on the solar irradiance and backscatter radiance measurements

and the albedo determination. It is not possible to determine which of these effects may be

operative to a significant degree in causing the overall instrument degradation observed.

2.3.6 Diffuser Plate Degradation

General Discussion

The problems arising from the SBUV instrument degradation can be understood more easily
ifFo_ and I, denote, respectively, the solar irradiance and backscattered radiance determined by

applying the values from the prelaunch calibration for diffuser reflectivity and spectrometer

sensitivity. Then, denoting the measured quantities, which vary with time t, by subscript M, for

each wavelength
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FM_(t) = FoA(t)D_(t)S_(t) (2)

and

IMp(t) = I_(t)SA(t) (3)

where FoA(t), D(t), and S(t), the solar flux, the diffuser reflectance normalized to its initial

(preflight) value and the spectrometer sensitivity normalized to its initial value, are unknown.

The quantity related to the atmospheric ozone content is the albedo (radiance-irradiance ratio).

IA(t) IMA(t)
A(A,t) = = --- DA(t). (4)

Fo;,(t ) FM_(t)

If A(A, t) increases, it could be due to an increase in IA, resulting from a decrease in ozone, or
an overestimate of D_(t)--i.e., an overestimate of diffuser reflectivity, or equivalently an

underestimate of its degradation.

From Equation 4, it is clear that a knowledge of D_(t) is critical to deriving the correct
albedos, and thus the correct ozone distributions and trends, from the measurements. The SBUV

did not include any means to carry out an inflight calibration for evaluating the long-term

behavior of either the spectrometer or the diffuser plate, admittedly a difficult task.

The estimation of DA(t) therefore requires the use of other information. Possibilities include

making special measurements in orbit to determine D_(t), deriving D_(t) from a comparison with

other ozone measurements, or deriving Dfft) from measurements Of FM and IM. Unfortunately,
all of these have problems. There are not enough reliable measurements of the vertical ozone

profile to allow D_(t) to be determined at the eight short wavelengths. (Perhaps Dobson
measurements could be used for the four long wavelengths, but apparently this was not

investigated before the ozone trend studies.) Some inflight measurements will be described

below, but they were infrequent, and used only for comparison with other results.

The remaining possibility, which was employed by the OPT, is to use the measurements of
I M and F M to estimate D_(t). Equations 2 and 3 have four unknowns, since lift) may be

changing due to a changing ozone distribution. If other information can be used to provide an

estimate of the temporal variation of Fofft), the number of unknowns is reduced to three.

For wavelengths at which the ozone absorption is imperceptible, it is plausible (but not

necessarily correct) to assume that the true underlying albedo over a large geographical area (like

the Tropics) shows no long-term change. This can be used in Equation 3 to determine Sift), and

thus unambiguously separate the effects of the diffuser from those of the spectrometer.

For wavelengths at which there is measurable ozone absorption, this procedure cannot be

followed, because assuming a trend in albedo effectively specifies the ozone trend that is being

sought. There is no information that allows one to make this separation with certainty in

Equation 3.

Therefore, the approach is to use measurements of FMfft), expressed by Equation 2, with

information on Fob(t) from other data, to estimate the product D_(t)SA(t), and hypothesize the

way the product is factored.
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The solar irradiance FM_(t) was measured by deploying the diffuser in the direct solar beam

for about 4 minutes on at least one orbit per day ("standard" observations) throughout the life of

the SBUV instrument. In addition, there were four periods of "frequent" observation, when the

diffuser was deployed on each orbit (about 14 per day) for an extended length of time. Figure

2.8a,b shows the measured degradation of the SBUV instrument, FM_(t)/FoA(=D_(t)Sfft)), for

November 1978-November 1986, for the I2 observed wavelengths.

Figure 2.8a also shows the cumulative exposure time E(t) of the diffuser plate to the Sun.

From the coincidence between periods of frequent diffuser deployment and rapid decrease of

solar signal, it is clear that part of the signal degradation is due to diffuser deployment into the
solar beam.

Historically, these are the data on which everything is based. From these, one must first

determine how the product DS depends on various factors and, second, separate D from S.

Clearly, the solution is not unique. Criteria for assessing the solution are its plausibility and its

consistency with the few constraints discussed below. The only physical limits are D = 1 (no

degradation on the diffuser) and S = 1 (all degradation on the diffuser).

The Exponential Model (Cebula, Park, and Heath)

Based on the first 6 years of data shown in Figure 2.8, Cebula et al. (1988, referred to as CPH

below; see also Park and Heath, I985) proposed a model of the degradation in which the

percentage rate of change of one component was proportional to the total diffuser exposure time

E, and the percentage change of the other component was proportional to the total time in orbit,
t. Then, after correction for the Sun-Earth distance to 1 AU,

FM_(t)

FoA

- P(t)e- _(Z)G(t)e s(;Ote-r(;OE(t) (5)

The photomultiplier gain, P(t), is determined from a comparison with the onboard reference
diode (which was not stable).

The second term contains the variations in the solar flux, based on the model of Heath and

Schlesinger (1984, 1986):

Fo,_(t)

Fo,_(O) - exp[- y(A)G(t)], (6)

where G is the ratio of core to wing radiance of the MgII doublet, and y are coefficients relating

the solar output at A to G. The y's were derived from observations of the 27-day rotation period;

their use here implicitly assumes that the change in the solar spectrum over the 11-year solar

cycle has the same wavelength dependence as the change over a 27-day rotation period. While
this is plausible, it neglects the possibility that there could be another component of variation

over the longer period (see Lean, 1987). Thus, there is uncertainty in the values used for Fo,_(t).

With these assumptions, we have

D(t)S(t) = e- r(Z)E(t) e- s(A)(t) (7)

where the assumptions that r(A) and s(A) do not change with time are included. Thus, to
determine the two components, one need only compare time periods in which the ratio E/t
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varied substantially. CPH did this by using time spans containing equal periods of nominal and

frequent solar observation. Periods of frequent exposure occurred in 1980 and 1981, which were
the basis for the original analysis, and again in 1984 and 1986. For those periods, CPH argued that

the solar change was small (although they were of several months' duration) and so would not
contribute to the variation.

The derived values of r(A) and s(A) are presented for the first two frequent deployment

periods in Table 2.1. The values of r(A) were subsequently smoothed in wavelength for use in the
OPT processing. The smoothed values are the last column of Table 2.1. The individual values for

Table 2.1 SBUV r and s Values

Wavelength r (SBUV) s (SBUV) r (smooth)

(nm) (hr-1) (dy-1) (hr-1)
255.5 5.720E-04 1.266E-04 5.8113E-04

273.5 5.090E-04 9.777E-05 4.9232E-04

283.0 4.400E-04 1.096E-04 4.4813E-04

287.6 4.330E-04 9.487E-05 4.2734E-04
292.2 4.090E-04 9.501E-05 4.0737E-04

297.5 3.760E--04 9.708E-05 3.8543E-04

301.9 3.660E-04 8.558E-05 3.6914E-04
305.8 3.620E-04 7.506E-05 3.5619E-04

312.5 3.320E-04 7.554E-05 3.3520E-04

317.5 3.220E-04 6.662E-05 3.2150E-04

331.2 2.880E-04 6.066E-05 2.8983E-04

339.8 2.750E-04 6.181E-05 2.7236E-04

F/Fo = exp (-rE(t) - st) fit to the first two "rapid deployment" periods (1980, 1981). The r(smooth) data are the most

recent numbers used in SBUV processing.

Figure 2.9
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I

(/3
>-
<
£3

UJ
D
.-.I
<
>

0.0001

-0.0001

-0.0002
2500 3500

I I I I

-- PERIOD 1 1980

[] PERIOD 2 1981

o PERIOD 3 1984

A PERIOD 4 1986 |

SBUV S-VALUES

I 1 1 I

2700 2900 3100 3300

WAVELENGTH (A)

Values of S(A) determined during the four frequent deployment periods by CPH.

the four individual determination are shown in Figures 2.9 and 2.10. The formal uncertainty
associated with r(A), based on the statistical fit of the solar flux data to the model, has been given

as -2 percent. Thus, at 273.5 nm (the wavelength contributing most to the 1 mb ozone retrieval),

the total decrease in diffuser reflectivity over 7 years is 27 percent with a formal uncertainty of

-+0.5 percent. Several arguments suggest that this formal error seriously underestimates the true

uncertainty in r(A):

• In Figure 2.9, it is clearly seen that the r(A) values, particularly those from 1984 and 1986,

differ significantly from the 1980-1981 values. The ozone retrievals use constant r(A) values

derived from the 1980-1981 frequent solar observation periods. This is disturbing, as the

deviation is largest in 1984-1986, the period of largest purported ozone decrease. The

standard deviation of the data points for r at each wavelength is 6-13 percent (depending on

wavelength), far greater than the formal 2 percent uncertainty in the 1980-1981 points.

Values of r(A) derived from the TOMS data (see Table 2.2), are typically 13 percent higher
than the SBUV r(A) values for wavelengths in common. This is statistically significant,

despite the factor-of-two higher formal error than the SBUV r(A) values. While the TOMS

FOV on the diffuser plate is smaller than that of SBUV, it is difficult to imagine an

area-sensitive degradation mechanism that is capable of producing such an effect. (It has

been suggested that the effect arises because the diffuser reflectivity has an angular

dependence and TOMS views the diffuser at a larger angle from the normal, and that the

frequent exposure periods were all at times that resulted in extreme angles. A deposit on
the diffuser that changed the angular dependence might, in principle, lead to such an

effect.)
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Table 2.2 Comparison of SBUV and TOMS r Values for Combined Periods 1-2

TOMS SBUV

A r-value Sigma r r-value Sigma r

312.5 -3.63E-04 1.11E-05 -3.32E-04 5.04E-06

317.5 -3.7@-04 1.14E-05 -3.22E-04 5.80E-06
331.2 -3.17E-04 1.06E-05 -2.88E-04 4.38E-06

339.8 -3.01E-04 1.06E-05 -2.75E-04 4.92E-06

360.0 -2.50E-04 1.04E-05 -2.38E-04 4.16E-06

380.0 -2.28E-04 1.04E-05 -1.79E-04 4.44E-06

Note: The above uncertainties are based on the formal statistical error of the fit. The TOMS value is at the 65% confidence level,
SBUV at the 90% confidence level.

R-Value Diff. Comb. sigma Diff./Comb. sigma
A SBUV-TOMS (90% conf.) (90% conf.)

312.5
:

317.5

331.2

339.8

360.0

380.0

3.13E-05 1.93E-05 1.62

5.36E-05 2.00E-05 2.68
2.87E-05 1.83E-05 1.57

2.58E-05 1.85E-05 1.39

1.15E-05 1.80E-05 0.64

4.84E-05 1.81E-05 2.68

Average 1.77
Standard deviation 0.72

2,

Year 6 Uncertainty Year 8 Uncertainty
% Diff. @ in % Diff. _ in

E(t) = 600 % Diff. E(t) = 761 % Diff.

312.5 1.90 1.18 2.41 1.50

317.5 3.27 1.24 4.16 1.58

331.2 1.74 1.1I 2.21 1.42

339.8 1.56 1.13 1.98 1.44

360.0 0.69 1.09 0.88 1.38
380.0 2.95 1.12 3.75 1.43

Average 2.02 1.14 2.57 1.46
Standard deviation 0.86 0.05 1.10 0.07

Note: Again, the uncertainty in the % difference between the SBUV-based and TOMS-based r-values is calculated using only the

formal statistical uncertainty in the fit, and does not include any possible systematic error. Specifically, the error in the TOMS

r-values due to goniornetric error is not included.

• The fit (Equation 7) to the degradation data that has been used to convert the SBUV radiance

measurements in ozone amounts assumes that r and s are constants with respect to time. A

comparison of this fit with the entire data record is shown by the dashed lines in Figure 2.8

and percent difference plots in Figure 2.11a,b for each wavelength. (Because the OPT
adopted the CPU model, values obtained from it are labeled OPT in this and several

subsequent figures. The two terms are interchangeable.) CPH argue that only the
exp(- rE) portion of the fit is used in the ozone data reduction, and that the variation of r
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=

4

calculated at each of the frequent deployment episodes is small. They interpret the small r

variation as meaning that the form exp( - rE) correctly describes the diffuser plate degrada-

tion. To obtain an overall fit, they hold r constant in time and force the spectrometer
constant, s, to vary. The variation of s with time calls into question the rationale for

assuming Equation 7 as a unique form for describing the degradation. At best, it indicates

that the formal statistical error given by CPH is probably too small.

The most critical assumption is the separation of the exponential model of the overall

degradation into two components. CPH assumed the diffuser plate degradation is described for

each wavelength by

D_(t) = ¢-r(),)E(t) (8)

and the spectrometer by

SA(t) = e _(_)t (9)

The rationale for putting all the exposure effect on the diffuser is that the diffuser plate is the

only optical element directly exposed to the solar UV radiance and therefore is most likely to be
the element affected by the amount of exposure time. The next element in the optical path, the

depolarizer, is exposed to about I percent of the solar flux striking the diffuser plate. CPH

assume that this amount of exposure would not contribute significantly to the exposure-

dependent portion of the observed degradation (although, as noted above, it is continuously

exposed). They claim that no exposure-correlated features are seen in the SBUV albedos to

within 0.5 percent error. The rationale for assigning all the temporal variation to the spec-

trometer (Equation 9) is less clear.

The application of Equations 8 and 9 to the 339.8 nm radiance data is illustrated in Figure 2.12.

The lower dash-dot line shows the raw solar irradiance, indicating that the SBUV response has

decreased by about 28 percent after 8 years. The solid line shows the relative changes in the raw

backscattered radiance, averaged from 20°S to 20°N, with seasonal variations removed. If the
true backscattered radiance has not changed, the spectrometer has degraded by about 10

percent. The dotted line shows the decrease in F expected from the analysis. The ratio of these,

the albedo, shown by the line of short and long dashes, is essentially constant over this period.

This demonstrates that the CPH approximations (including the use of r and s from 1980-1981

only) give reasonable results at this wavelength, but does not establish their applicability at other

wavelengths.

One must be cautious about assuming that this approach is general, for at least two reasons:

While A (340 nm) is sensibly a constant, other data (Cebula, private communication, 1988)

indicates that this can vary by +2 percent. It is not clear how large an uncertainty in D

(340 nm) this would permit, and subsequently what part of the time-dependent deg-

radation could be assigned to the diffuser.

More important, even knowing what fraction of time-dependent degradation could be

assigned to the diffuser at 340 nm, where degradation is relatively small, does not

necessarily mean that the same fraction is relevant at the shorter wavelengths, where both

components of the degradation are greater.
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Figure 2.12 Comparison at 340 nm between the measured solar irradiance, irradiance corrected for
diffuser degradation, Earth radiance from 20°N-20°S, and albedo, as a function of time.

An Alternate Empirical Model

Alternate empirical models can be derived that accurately describe the observed degradation
(Herman and Hudson, private communication, 1988). These are of two types. The first and

simplest is the observation that the data between 1978 and 1986 are well fit by linear or
quasi-linear functions of the forms

D(t)S(t) = a + bt + cE

or

D(t)S(t) = a + bt + cE + dE(t)t (10)

where E(t) is the total accumulated exposure (hours) and t is the total elapsed time (hours) since

day 307 of 1978. The linear expression fits quite well, with the largest differences during and after

the last frequent deployment period. The second type is more closely based on a physical model

of thin film formation on the diffuser plate and its optical effect on reflectivity (Madden, 1963;

Smith et al., 1985). In this case, D(t) is a function of the film thickness, real and imaginary parts of
the refractive indices of a multilayer film over an aluminum substrate, and film deposition rate.

S(t) is an assumed empirical function that could be exp( - st). For both the quasi-linear and the

thin film fits, the four parameters are determined by a least-squares procedure (nonlinear for the
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thin film case). The solid line in Figure 2.8 represents Equation 10 plotted over the normalized

data FIFo. The fit is good over the entire period (1978-1986). The region of poorest fit is near the
end of the data set, where the last rapid deployment occurred. The same problem occurs with the

least-squares fitting procedure if the data are truncated just after the 1984 frequent deployment.
If the data were extended into 1988, then the fitting problem would probably disappear.

Percentage differences are shown by the solid lines in Figure 2.11.

Although the compressed scale makes the magnitude of the differences hard to see, it is clear

that, at all wavelengths, the quasi-linear fit is closer to the data than the exponential model. This

is perhaps not surprising in that a four-parameter (or three-parameter) model might be expected
to fit better than a two-parameter model. However, it does illustrate the nonuniqueness of the
form of the fit. The coefficients derived using Equation 10 are given in Table 2.3.

Table 2.3 Coefficients for the Quasi-Linear Model

Wavelength A B C D
(nm) (hr-1) (hr-1) (hr-2)

255.5 9.900E-01 -5.048E-06 -4.785E-04 2.584E-09

273.5 1.004E + 00 -4.623E-06 -4.155E-04 2.110E-09

283.0 1.002E + 00 -4.194E-06 -3.907E-04 1.646E-09

287.6 1.007E + 00 -4.012E-06 -3.674E-04 1.448E-09

292.2 1.001E + 00 -3.683E-06 -3.625E-04 1.417E-09
297.5 1.002E + 00 -3.404E-06 -3.542E-04 1.276E-09

301.9 1.001E + 00 -3.209E-06 -3.316E-04 1.036E-09

305.8 1.003E + 00 -3.009E-06 -3.186E-04 9.008E-10

312.5 1.002E + 00 -2.721E-06 -3.042E-04 6.779E-10

317.5 1.006E + 00 -2.565E-06 -2.864E-04 5.153E- 10

331.2 1.005E + 00 -2.235E-06 -2.593E-04 2.312E-10

339.8 1.006E + 00 -2.270E-06 -2.498E-04 1.127E-10

FfFo = A + B*t + C*E + D*E*t fit to full data set of 2303 points (1978 to 1986).

The quasi-linear fit is not based on any physical model and therefore cannot be extrapolated

beyond the domain of the data (1978-1986). Eventually, the degradation data, FIFo, would have
to deviate from the quasi-linear form. Such a deviation might have helped in constructing a

physical model based, for example, on thin film optics. In the discussion that follows, different

factorization of the quasi-linear model can be shown to yield different rates of degradation for the

diffuser plate and spectrometer. One of the many possible cases indicates that the decreasing
ozone trend at 1 mb is much smaller (perhaps zero) than that calculated by the OPT using

Equation 8, and another case shows a larger decrease than that found by OPT. The point of this
exercise is to demonstrate the large uncertainty in any ozone trend analysis based on the

presently archived data.

Case M: Diffuser degradation more than exponential model (which will result in higher
derived ozone concentration, or more ozone).

Equation 10 can be written as

D(t)S(t) = (A + kE)(1 +
\

Bt + DEt + hE
)A + kE

(11)
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where

Let

then assume that

h=C-k

C

k = f 1 + (B/A)t (12)

and

D(t) = A + kE

Bt + DEt + hE

S(t)-- 1 + A + kE (13)

The factor fin Equation 12 is an arbitrary scale factor selected to produce a particular value of
the calculated SBUV albedo.

Case L: Diffuser degradation less than the exponential model (which will result in lower
derived ozone concentration)

where

Let

An alternate division of terms is

D(t)S(t) = (A + ht)(1 +

k =B-h.

CE + DEt + kt

A+ht ) (14)

h = B (15)

then assume the factors can be identified as

CE
D(t) = 1 +

and

+ DEt + kt

A+ht
(16)

S(t) = A + ht

In Case M, the diffuser and the spectrometer degradation depend on both E and t. In Case L,

the diffuser term depends on E and t, while the spectrometer term depends on t alone.

Comparisons between the diffuser degradation using the CPH constant r(smooth) shown in
Table 2.1 and the quasi-linear diffuser degradation (Case M f= 1 is Case M1, f=0.9 is M2 and

Case L) are shown in Figure 2.13a,b for all 12 wavelengths used in the ozone retrieval algorithm.

Figure 2.14a,b shows the corresponding degradation of the spectrometer.

Using Equation 4, the different rates of the diffuser plate degradation can be used to calculate

the percent change in albedo relative to the CPH formulation. Results of such a comparison are

shown in Figures 2.15a,b. Each line labelled with the wavelength is the zero reference line. Case

L generally has a larger albedo at the end of 8 years, while Case M has a smaller one. In terms of
ozone, a negative (positive) albedo difference means more (less) ozone than the OPT model

based on the CPH exponential fit would predict. (Henceforth, this will be referred to simply as
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Figure 2.14a Relative spectrometer degradation as a function of time for the OPT (CPH) and quasi-linear
models, for the six shortest wavelengths.
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Since 0.1 units = 10%, the 273.5 nm deference for case M2 implies about 14-16% more ozone than OPT.
This reduces the reported ozone decrease at 1 mb to about 5% from 1978-1987. Case M1 would yield no
decrease over this period, while case L would give a slightly larger decrease than the OPT results.
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Figure 2.15b The same as 15b, but for the six longest wavelengths. Note that the longest wavelength
channel, 339.8 nm, is almost independent of the model chosen to fit the degradation of the instrument or its
separation into diffuser plate and spectrometer degradation. This means that the long-wavelength channels
cannot be used to determine S(t) and D(t) for the shorter wavelengths (cf. Fig. 2.12).
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the OPT model.) Since 0.1 units = 10 percent, the 273.5 nm difference for Case M2 implies about

a 14-16 percent smaller albedo than OPT, or about 27 percent more ozone over the 8-year period.

The conclusion is that the variation of albedo and ozone amounts can be very large, depending

on the way the D(t)S(t) product is factored. Clearly, a critical question is whether there is any way

to select one separation over another.

2.3.7 Validation of Diffuser Degradation Models

Comparison With Dobson Network Results

Comparison with the Dobson network results is a way of checking the total ozone results
and, therefore, the longer wavelength channels, and will be deferred to the next section, which

will discuss TOMS as well. For profile data, i.e., wavelengths shorter than 312.5 nm, it has not

been possible to obtain data that would distinguish between the various choices forD(t) and S(t).

It might be expected that the inclusion of E(t) in the spectrometer degradation portion of Case M

would lead to structure in the radiance observed at 339.8 nm over the tropical regions of Earth.

As can be seen from Figure 2.14, no structure corresponding to the frequent deployment periods

is present in any of the three forms of S(t), and the magnitudes are sufficiently close as to be

within the experimental error. Thus, these data do not point to a preferred model.

Earthshine Data

An additional source of data was critically reviewed. This was the series of diffuser Earth-

view studies, during which backscattered radiance of Earth was observed directly, and off the

diffuser. The ratio of the diffuser view to the direct view gives a measure of diffuser-relative

reflectivity, as other instrument sensitivities and Earth radiance cancel out. By periodically

repeating the measurements, it was hoped that a time history of the relative reflectivity could be
obtained, and used to compare with and check the model predictions.

The geometry of this experiment is illustrated in Figure 2.16. The diffuser was deployed
continuously on December 6 or 7 in the years 1978 and 1983-1987. The data were then ratioed to

the average of the direct view on the prior and following days. An example of the results for 1978

in Figure 2.17 illustrates some of the problems. The rapid rise at a subsatellite latitude near 20°N

is due to the direct solar illumination of the diffuser, while the drop near 85°S suggests that the

FOV is partially in an unilluminated region. However, for the region between, the latitudinal

variation is not understood. This is partly because the area of the atmosphere seen by the diffuser

is very large and poorly defined. The signal received must include many rays taking long paths at
large zenith angles through the atmosphere. The effective backscattered radiance from the

atmosphere will thus depend on the ozone amount and distribution. However, neither the

complete radiative transfer problem nor the sensitivity to instrumental effects (e.g., the angular

dependence of the diffuser reflectivity) has been analyzed in detail. Therefore, there may be

systematic errors in the reported values, for which no estimate can now be given. In addition,

there are appreciable random errors, due to cloud variability at long wavelengths and to the low

signal levels (2.5 percent of the direct signal) and poor signal to noise ratios at the short

wavelengths. These are at the 1-2 percent level.

At this time, only data for 1978 and 1983-1985 have been reduced. Figure 2.18a,b,c compares
the model used by the OPT and quasi-linear predictions of the degradation from 1978 to

1983-1985 with the "earthshine" results. The rough magnitude and the general trend for greater

degradation at shorter wavelengths agree, giving greater confidence in these features. However,
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Figure 2.16

Figure 2.17
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the earthshine results have a curious local minimum near 303 nm each year that is not suggested

by the other results. Taken at face value, the "earthshine" data also indicate a faster degradation

with time than either of the models, with greater degradation by 1985 than predicted by the CPH
model.

However, because the interpretation of the "earthshine" values is not clear, the only
conclusions that can be drawn at this time are that the earthshine data do not consistently or

unambiguously favor one model over another, and perhaps disagree with all those discussed

here. This could indicate that the assumption that the coefficients are constant with time is not

valid. More probably they should be interpreted only as not contradicting the general magnitude
and trend with wavelength derived from the models.

Total Ozone Determinations From the D-wavelength Pair

Another piece of internal information from the SBUV experiment indicates strongly that the

OPT corrections for the diffuser degradations are not adequate. In a recent study, Bhartia

(private communication, 1988) has compared total ozone determined from the D-wavelength

pair to archived total ozone in the Tropics. Figure 2.19 shows schematically the SBUV wave-

lengths involved. Operationally, major reliance is placed on the A and B pairs, with C being used

in high latitudes where the solar zenith angle is large and the total ozone amount is large (See

Chapter 3).

The D pair uses wavelengths that are only 6.7 nm apart, compared to 18.7 nm for the A pair.
Thus, if diffuser degradation is roughly linear in wavelength, the D pair should be 1/2.8 = 0.36

times as sensitive to diffuser drift as the A pair. In addition, because the difference in ozone

absorption coefficients is larger for the D pair than for the other pairs, results then are estimated

to be only 1/4.5 ( = 0.22) times as sensitive to diffuser drift than the archived "best ozone," which

is based on a weighted sum of the A, B, and C pairs.

The limitation is that, because the ozone absorption coefficients at the D wavelengths are

large, this pair can give results only for the small solar zenith angles, i.e., in the Tropics.

Figure 2.20 shows the difference between the archived "best ozone" and the D pair ozone,

between 20°N and 20°S, as a function of time. The points in this plot are monthly averages

determined each March and September and show a downward drift of the archived ozone
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Wavelength pairs for total ozone determination.
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Figure 2.20 Archived SBUV total ozone minus total ozone determined from SBUV D-pair wavelengths,
1980-1987 (from Bhartia, unpublished).

relative to the less sensitive D-pair ozone. The data indicate a small drift, if any, between the

archived and D-pair ozone from launch until late 1982, followed by a rapid downward drift of

archived ozone. This suggests that the model used to correct for diffuser drift did not display any
obvious problems for the first 4 years, but seems to have departed from the actual diffuser

thereafter. The change shown in Figure 2.20 is similar to the comparison between SBUV and

Dobson results in Chapter 4. This lends further support to the stability of the D-pair ozone, and
to the failure of the OPT model to follow diffuser degradation very well after 1982, at least at the
longer wavelengths.

2.3.8 Assessment

Section 2.3.6 has shown that a linear or quasi-linear form for the dependence of the
degradation on t and E fits the observed degradation of the solar observations somewhat better

than an exponential form. The form used by CPH is not only not unique, it is not as good as some
others. Section 2.3.6 also pointed out that the product of D(t)S(t) could be factored in an infinite

number of ways, leading to large differences in the estimated diffuser reflectivity; again, the form
used by CPH is not unique. Section 2.3.7 shows that there are no known data that allow a

selection of one factorization over another at the short wavelengths used for ozone profile

determination. Thus, the true value of any instrument change (and any ozone trend) is subject to
large uncertainty.

Certainly, more complex models of diffuser and spectrometer degradation are possible, but

are not amenable to verification from the available data and observing sequences used. The

crucial factor is that none of the proposed models has a physical justification for its uniqueness,

nor is it possible to show from the data that any one model is the only one compatible with the
observations.
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Values of D for the quasi-linear and OPT models after 8 years are compared in Table 2.4, along

with the percent differences in D between Case M1 or Case M2 and Case L. These percent

differences can be used to calculate the uncertainty in ozone change in each Umkehr layer, as
described in Chapter 3. These uncertainties are plotted in Figure 2.21. Clearly, the uncertainty in

the ozone amounts is quite large after 8 years, as expected from the large uncertainty in the

diffuser characteristics. The uncertainties in the trends, or rate of change, are shown in Figure
2.22.

Table 2.4 Model Values of Diffuser D After 8 Years

Wavelength M1 M2 OPT L Ratio 1" Ratio 2*
(nm)

2555 .4276 .4848 .6426 .6508 0.414 0.292

2735 .5349 .5814 .6875 .6977 0.264 0.182
2830 .5800 .6220 .7110 .7020 0.191 0.122

2876 .6147 .6533 .7224 .7162 0.152 0.092

2922 .6286 .6658 .7334 .7297 0.149 0.092

2975 .6469 .6822 .7458 .7346 0.127 0.074

3019 .6748 .7073 .7551 .7453 0.099 0.052

3058 .6939 .7245 .7626 .7523 0.081 0.038

3125 .7146 .7432 .7748 .7577 0.058 0.019

3175 .7362 .7626 .7830 .7649 0.038 0.003

3312 .7674 .7906 .8021 .7780 0.014 -0.016

3398 .7755 .7980 .8128 .7780 0.003 -0.025

*Ratios 1 and 2 are the differences L - M1 and L -2 M2, respectively, divided by their average value.
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Figure 2.22 Uncertainty in rate of ozone change determined from SBUV data over 8 years.

Table 2.4 and Figure 2.18c also illustrate that the D(OPT) is close to Case L, at the top end of

the range, and results in ozone values close to the minimum likely values (i.e., largest decrease).
The ozone changes determined using the OPT model, and those determined from cases L, M1,

and M2, are compared in Table 2.5 and Figure 2.23. Clearly, the models indicate that the change

in ozone is unlikely to have been larger, and may have been considerably smaller, than
suggested by the archived OPT data. In fact, there may have been no change or trend at all.

Table 2.5 Midlatitude Ozone Changes (1978-1986) for Different Diffuser Degradation Models
Umkehr

Layer OPT* L M2 M1

10 -25 -30 +3 6

9 -22 -24 -3 5

8 -14 -11 -7 -3

7 -9 -8 -4 0

*Different analyses and latitude ranges will lead to slightly different values for the ozone decrease.
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data, for several models of diffuser degradation. Curve marked OPT used the model employed in producing
the data archived as of 1987. Curve Lwas calculated using a model with less diffuser degradation; M1 and M2
were derived using models with more diffuser degradation than the SBUV archive model.

2.4. THE TOTAL OZONE MAPPING SPECTROMETER (TOMS)

TOMS is an ozone-mapping instrument mounted adjacent to the SBUV instrument on the

Nimbus-7 satellite (Heath et al., 1975 and 1978 [UG]). The primary measurement goal of TOMS is

to obtain contiguous mapping of the total column ozone density on a latitude-longitude grid on

the Earth's surface (Bowman and Krueger, 1985; Schoeberl et al., 1986). To achieve this, TOMS
step scans across the orbital track, sampling radiation backscattered from swaths that pass from

side to side through the nadir. By comparison, the SBUV observes solar radiation backscattered

only in the nadir.

Although TOMS is an independent optical-mechanical ozone sensor, it shares with the

SBUV the diffuser that is deployed for direct solar observations. Because the four longest SBUV

wavelengths, which are used for total ozone determination, are the same as those used by

TOMS, total ozone trend uncertainties for both instruments are treated in this chapter.
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2.4.1 Physical Principles

TOMS employs the same measurement principle as the SBUV instrument (see Section 2.3.1).
Ozone column amounts are inferred by utilizing the wavelength dependence of Earth's ultra-

violet albedo at the wavelengths between 312.5 nm and 380 nm, in the region of the Huggins

band of the ozone absorption spectrum. The TOMS raw data, like the SBUV, are measurements
of the intensities of direct and backscattered solar UV radiation. TOMS, however, makes

measurements in only six fixed wavelength channels (380.0, 360.0, 339.8, 331.2, 317.5, and

312.5 nm), the last four of which are used in pairs to provide three estimates of the total column

ozone concentration by the differential absorption method. The remaining two channels, which

are free of ozone absorption, are used to determine the effective background albedo. Mathe-

matically, the measurement quantity required for the determination of the total ozone con-

centrations is (with reference to Equation 1),

I(h_) I(h2)

Fo(hl) / Fo(h2) (17)

with appropriate corrections for the background albedo and cloud cover. In particular, the

so-called A-pair data, which are the ratios of the albedos at 331.2 nm and 312.5 nm, are analyzed

to provide low-latitude total ozone concentrations. Since the retrieval of total ozone amounts
from the measured raw data is determined from ratios of the albedo of Earth plus atmosphere

divided by these wavelengths, the TOMS measurement technique is, in principle, capable of
highly reliable determination of the ozone column. The OPT has conducted sensitivity studies

that indicate that a 1 percent wavelength-dependent uncertainty in the measured albedos leads

to a 1 percent uncertainty in total ozone, whereas a 1 percent wavelength-independent albedo

uncertainty results in an uncertainty of only 0.3 percent in total ozone. (For a more complete

discussion, see Chapter 3.)

Again, the plan for determining long-term stability is implicit. Most important, as discussed

in Section 2.3 with respect to SBUV, no provision was made to monitor the reflectivity of the

diffuser during flight. However, the TOMS monochromator wavelengths and the electrometers'

gains have been measured during the mission. Unlike the SBUV experiment, the gain of the

TOMS photomultiplier has not been monitored, on the assumption that such changes are

wavelength independent and therefore cancel in the ratio of the albedos.

2.4.2 Instrument Description

Optical

TOMS measures the direct solar UV irradiance and the UV radiance backscattered by Earth's

atmosphere at each of its six fixed wavelengths with a spectral pass band of I nm. Four of these

wavelengths, those used in ground-based Dobson spectrometer ozone determination, are in

common with the SBUV instrument. The principal optical components (Figure 2.24) involved in

a TOMS radiance measurement are a depolarizer, mirror system for scanning the Earth "scene,"
monochromator, and photomultiplier. Radiation backscattered from a given Earth "scene"

selected by the scan mirror is depolarized by a calcite Lyot type depolarizer (note that this is

different from the SBUV depolarizer), transferred via a mirror to the entrance aperture of a single
Ebert-Fastie monochromator (which is a close replica of the first monochromator of the SBUV

spectrometer), and dispersed by a fixed grating onto an array of exit slits. A rotating wavelength
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Figure 2.24 TOMS optical diagram (from Heath et al., 1975).

selector is used to gate th e dispersed light from the desired exit slit to the detector, which is the

same type as that used in the SBUV instrument. This same disc also chops the incident light at the
entrance slit to provide dark intervals between the wavelength gates at the exit slit.

When nadir-looking, TOMS, like the SBUV instrument, views radiation backscattered by the

underlying atmosphere and Earth along the track of the Nimbus-7 spacecraft. By mechanically

scanning its 3 ° x 3 ° FOV (by comparison, the SBUV FOV is 11.3 ° x 11.3 °) through the

subsatellite point, perpendicular to the orbital plane, TOMS also measures the UV radiation

backscattered from along a 105-degree swath ( _+52.5 degrees, in 35 sequential steps of 3 degrees
each) across the spacecraft track (Figure 2.25). At each scan step, TOMS measures the signal in

each of the six wavelength channels. From the data acquired during these scans (achieved by a

scan mirror driven by a stepper motor), a contiguous mapping of the total ozone can be created,

since the scans of consecutive orbits overlap; the scan geometry provides total Earth coverage

somewhat more than once per day. For direct solar irradiance measurements, which TOMS

makes once per week, the same diffuser used by SBUV is deployed; TOMS views a central part of

this diffuser, which SBUV views in its entirety.

Electronics/Signal Processing

TOMS has its own detector power supply, first-stage signal processing amplifier, and

calibration generator. A small bias is designed into the electrometer amplifier that is additive to
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Figure 2.25 Diagram of TOMS scanning swath (from Heath et al., 1978).

the PMT dark current. This bias ensures that the electrometer signal remains onscale during the
spacecraft operation lifetime, thus eliminating the need for zero correction circuits. This bias is

subtracted along with the dark current by the digital demodulation techniques.

The bulk of TOMS signal processing electronics is performed by the electronics module that
TOMS shares with SBUV, and is described in detail in the UG.

Operating Modes

TOMS has five scanner modes: scan off mode, single-step mode, normal scan mode, stowed
mode, and view diffuser mode. These are described in the UG.

Inflight Calibration

The techniques used for inflight monitoring of the wavelength calibration of the TOMS

monochromator and the gain stability of each electrometer range are described in the UG.

Scientific and Engineering Data Output

The TOMS radiance values at specified wavelengths for each instrument field of view (IFOV)

along each orbit, together with housekeeping data such as the PMT bias, temperature, and diode

detector bias, as well as the solar, satellite, and Earth reference data, are available on magnetic
tape.
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2.4.3 Prelaunch Calibration

Analogous to the SBUV prelaunch calibration (see Section 2.3.3 and the UG), TOMS

calibration comprises three primary parts: irradiance and radiance radiometric calibrations and
system linearity determination. The dynamic range of the TOMS signal is 103, and the linearity

over this range is assumed to be better than 2 percent (which is the maximum measured SBUV
nonlinearity). Stray light rejection is estimated to be better than 103 , which allows the minimum

signal to be measured with 1 percent accuracy. TOMS polarization sensitivity was measured
prior to launch, and is discussed in the UG. Unlike the SBUV, TOMS sensitivity to diffuser angle

was not determined prior to launch.

2.4.4 Results in Orbit

There is a difference of approximately 3 percent between the absolute total ozone con-

centrations measured just after launch by TOMS and SBUV, with TOMS data yielding the higher

values. The origin of this bias is attributed to differences in the respective prelaunch absolute
calibrations of the two instruments, and is not understood by the experimenters.

During the first 7 years of TOMS operation, the drift in the wavelength calibration of its
monochromator was less than 0.0i nm. Consequently, the TOMS experimenters do not consider

wavelength-drift-induced errors to be a significant source of uncertainty in the TOMS measure-
ments.

The maximum electrical calibration change detected during the first 7 years of operation was

less than 0.3 percent, with the typical change being less than 0.1 percent, which is within the
measurement noise. Therefore, electrical calibration drift-induced errors are not considered to be

a significant source of uncertainty in the TOMS measurements. However, the range 3 to range 4

gain ratio was increased by 0.55 percent after an annual oscillation of I percent peak t O peak was
observed in the ratio of the solar irradiance measurements at the A-pair (331.2 nm, 312.5 nm)

wavelengths. This is an effect related to the changing angle of solar illumination of the diffuser.
Although this oscillation cancels in the albedo, it compromises the determination of diffuser

degradation parameters (the r values discussed in Section 2.3) from the TOMS solar signals for

comparison with those determined from the SBUV solar signals (see below). Adjusting the gain

ratio removed the A-pair oscillation, but had no impact on the ratios of the B (331.2/317.5 nm) and

C (339.8/331.2 nm) pairs.

After the removal of the diffuser degradation, there is an overall increase in the TOMS solar

and backscattered signals (e.g., 5 percent at 340 nm). In part, this is considered to be due to an

overall increase in photomultiplier gain. However, this does not explain the wavelength

dependence of this increased sensitivity.

Since February 1984, the chopper nonsync flag condition has occurred in approximately

randomly spaced episodes. This has caused both a relative change and an increase in the scatter
in the TOMS-measured solar signal. The B-pair ratio (which is used for high-latitude ozone

determination) has been affected more than the A-pair ratio (used for lower latitude ozone

determination). In particular, a plot of the B pair ratio vs. time (McPeters, private communica-

tion, 1987) shows that since 1984 it has oscillated between two separate values. The nonsync
condition is considered to be the cause of drifts in the bias between TOMS and SBUV total ozone

concentrations: from launch to 1986, the TOMS A-pair-derived ozone has drifted upwards, from
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3 percent to 3.5 percent, compared to SBUV total ozone, and the TOMS B-pair-derived ozone has
drifted downward, from 3 percent to less than 1.5 percent. The overall result of this is a

downward drift in the bias between TOMS and SBUV total ozone concentrations of 2 percent to 3

percent at high latitudes during winter, and of <1 percent at the Equator.

2.4.5 Mechanisms of Drift

Many of the same kinds of drift mentioned for SBUV (Section 2.3.5) are also relevant to

TOMS. Aside from the wavelength dependence of the diffuser degradation, two particular
possible sources of wavelength-dependent drifts in the measured TOMS albedos are drifts in the

wavelength calibration of the monochromator and in the electrometer gain ratios (since mea-

surements at different wavelengths are made on different gain settings). However, both have

been monitored in orbit and are not considered to be major sources of uncertainties in the
measured long-term ozone trends.

Changes in instrument throughput (such as PMT gain and reflectance of optical surfaces,
which may affect the measured irradiance and radiance) cancel, since the albedo is the ratio of

these quantities.

Thus, the primary source of uncertainty in the long-term ozone trends reported by TOMS is

the uncertainty in the reflectivity of the diffuser TOMS shares with SBUV. Changes in the

wavelength dependence of the diffuser reflectivity (specifically at each of the wavelengths used

to form the albedo pairs) affect the measured albedos directly, while uncertainties in the absolute
reflectivity at the longer wavelengths (cf. Eck et al., 1987) generate uncertainties in the back-

ground albedo that are propagated through the data reduction algorithm (see Chapter 3). Since

the diffuser degradation parameters determined from SBUV data are used in the production of

total ozone values from TOMS data, the critical evaluation of the diffuser reflectivity degradation
parameters, discussed with reference to SBUV in Section 2.3, is also pertinent here.

2.4.6 Estimates of Diffuser Plate Degradation Effects on Total Ozone

Calculations of diffuser degradation at the TOMS wavelengths for the models discussed in
Section 2.3 are shown in Figure 2.26 and tabulated in Table 2.6. Since it is clear that the diffuser

degradation is wavelength dependent, it is necessary to consider how uncertainties in the

spectrum of the change in diffuser reflectivity may affect the total ozone trends derived from the

Table 2.6 Model Values of Diffuser D After 8 Years

Wavelength D(OPT) D (M2) D (M1) D (L)% Diff. % Diff.
(nm) D(M1)-D(OPT) D(L)-D(OPT)

312.5 .7767 .7447 .7161 .7592 -8.1 -2.8
317.5 .7827 .7672 .7407 .7695 -5.5 -1.7

331.2 .8032 .7946 .7713 .7820 -4.1 -2.7

339.8 .8112 .8028 .7802 .7827 -3.9 -3.6

360.0 .8343 .8409 .8225 .8105 -1.4 -2.9

380.0 .8727 .8851 .8717 .8241 -0.11 -5.7

Ratio 312.5/ 0.9670 0.9372 0.9284 0.9708

331.2
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Figure 2.26
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TOMS data. Three qualitative estimates at the A-pair wavelengths (331 nm and 312 nm) were
obtained as follows:

The diffuser degradation parameters were determined separately for four different fre-

quent deployment periods, using the OPT model. The r values are shown in Figure 2.9. For
there to be no associated uncertainty in the derived total ozone values, the diffuser

degradation at 331 nm must remain the same, relative to the degradation at 312 nm, for each
of the four determinations. However, after 650 hours of exposure (i. e., 7 years), the diffuser

reflectivity at 331 nm calculated using the 1984 r values is 1.1 percent lower than when
calculated with the 1981 r values (when normalized at 312 nm). This wavelength-dependent

uncertainty in the measured albedos would correspond to a similar uncertainty in the
derived total ozone.

Because TOMS views one fifth of the diffuser area seen by SBUV, and does so at a larger

angle, the changes in reflectivity determined for the entire diffuser surface from the SBUV

data may not be completely appropriate for reduction of TOMS data. The degradation at the
center of the diffuser was determined using the OPT diffuser degradation model discussed

in Section 2.3.6 and the TOMS raw solar signal. The results were presented in Table 2.2; the

TOMS-determined r values are about 2 percent higher than the SBUV-determined r values.

The TOMS-derived values are considered to be less reliable because 1) it was not possible to

correct the raw solar Signal for changes in the PMT gain because this was not monitored on

TOMS and 2) the angle-related annual oscillation noted above interfered with the raw

signal during the frequent-deployment time period. Converting the r values to D's results
in a wavelength-independent shift of 2.3 percent, which translates to an uncertainty of 0.7

percent in the derived total ozone. The wavelength dependence does not differ sig-

nificantly from the SBUV value.
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• Table 2.6 presents the D values for the various total ozone wavelengths for the quasi-linear

and OPT models and the A-pair ratios after 8 years. Comparing Cases M1 and M2 with Case

L indicates uncertainties of 3.6-4.6 percent in total ozone over the 8 years, or an uncertainty

in the rate of change of 0.57 percent per year.

2.4.7 Assessment

Because TOMS views the same diffuser as that used by SBUV, and because the TOMS total

ozone values are obtained by using diffuser degradation parameters determined from SBUV

data, the long-term total ozone trends measured by TOMS are very similar to those obtained by

SBUV. They cannot be considered as independent determinations of the total ozone trends. For
the reasons discussed in Section 2.3, there is no information available with which to uniquely

determine the partitioning of degradation between the diffuser and the spectrometer. Estimates

of the relative D value uncertainties are given in Table 2.6.

An approximate value for the total ozone uncertainty can be obtained by multiplying the D

value uncertainties by the sensitivity factors from Chapter 3, Table 3.1. The resulting uncertainty

in total ozone, after 8 years of diffuser degradation, is given in Table 2.7.

Table 2.7 Range of Uncertainty in Total Ozone

Zenith Angle
0° 51 °

Case M2-Case L + 2.2% + 2.1%

Case M1-Case L + 3.9% + 3.3%

Case M1-OPT + 4.2% + 3.1%

Thus, the range of total ozone, based on the uncertainty in D values, is a few percent. The OPT

values suggest the lowest values of total ozone: 4.2 percent below Case M1, or 2.5 percent below

Case M2, and even 0.3 percent below Case L for small zenith angles.

Over the 8 years of data, the OPT values are decreasing 0.53 percent per year faster than M1,

0.31 percent faster than M2 and 0.04 percent per year faster than L, again for small zenith angles.

Fleig et al. (1986) found OPT TOMS trends lower than the Dobson network by 0.37 percent per
year. The Dobson results clearly point toward a larger diffuser degradation than that given by the

OPT formula, and suggest values much closer to those given by Case M of the quasi-linear

model. This also gives some support to the larger Case M degradation at the shorter profiling

wavelengths discussed in Section 2.3.

2.5 THE SAGE-I AND SAGE-II INSTRUMENTS

SAGE-I and SAGE-II are both satelliteborne multiwavelength radiometers employing solar

occultation techniques to determine concentrations of stratospheric aerosols and gases. Ozone

profiles are determined from measurements of absorption in the most intensely absorbing part of

the Chappuis band, at 600 nm. SAGE-I was launched aboard the dedicated Application Explorer
Mission-B (AEM-B) spacecraft on February 18, 1979. It operated continuously for 34 months,

until November 1981, when the spacecraft power subsystem failed. SAGE-II was launched from
shuttle aboard the Earth Radiation Budget Satellite (ERBS) on October 5, 1984. It has operated

continuously since that time without problems. Both are in approximately 600 km circular orbits
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with inclination angles of 56 ° and 57 ° for SAGE-I and SAGE-II, respectively, such that the

latitudinal coverage is almost identical.

2.5.1 Physical Principles

In the solar occultation technique, measurements are made of the solar radiation transmitted

through the atmosphere as the Sun sets behind it.

Mathematically, the atmospheric transmission value TA(h) at tangent height h and wave-

length Ais expressed as a ratio between the solar radiance observed within the atmosphere to the

radiance outside the atmosphere as

T_(h) = I_(h)/Io_ (18)

where L,(h) is the solar radiance at wavelength A observed at tangent height h and Io;,(h) is the

measured extraterrestrial solar radiance at A. Ozone concentration profiles can then be retrieved

from the atmospheric transmission profile as described in the algorithm chapter or by Chu and
McCormick (1979), Mauldin and Chu (1982), or Chu (1986).

The measured data at the different wavelength channels are converted to transmission values

by ratioing a scan across the Sun, obtained when the FOV is transversing the atmosphere, to a
reference Sun scan. The reference Sun scan for each channel is obtained from the high-altitude

scans with tangent altitudes above 100 km, where no atmospheric attenuation is present.

Tangent altitudes of the measured data were previously determined differently for SAGE-I and
SAGE-II. The SAGE-II algorithm used spacecraft and solar ephemeris data to calculate tangent

altitudes, while the SAGE-I algorithm determined the tangent altitude by fitting the calculated

Rayleigh transmission with the short-wavelength channel measurements. For the purpose of

these studies of ozone trends, SAGE-I data have been reinterpreted using tangent altitudes

determined in the same way as they were for SAGE-II.

It is important to note that the measurements performed by SAGE-I and SAGE-II are

self-calibrating, in that only atmospheric transmission or relative radiance measurements are
required to determine the concentration of atmospheric species such as ozone, and, therefore,

no absolute radiance calibration is performed. The only requirement is that the instrument with

all its various components retain constant responsivity for the duration of each measurement

event--i.e., a spacecraft sunrise event or sunset event. A typical measurement event duration is

about 100 seconds, in which time the instrument configuration is kept nearly constant except for
the scan mirror, which views the Sun at an elevation angle that varies slightly with time. The

primary consideration is, thus, to keep the instrument at a constant temperature such that no
thermal drift can occur during the measurement events.

2.5.2 Instrument Summary

Both the SAGE-I and SAGE-II instruments share the same design, illustrated in Figure 2.27,

with similar optical components. Each instrument is composed of three major subsystems, i.e., a

scanhead assembly, a telescope, and a spectrometer. The scanhead assembly consists of a scan

mirror together with a Sun-presence sensor and an azimuth Sun sensor. The telescope is a

spherical Cassegrain with a 152.4 cm effective focal length and an f-number of 30. The telescope
is mounted in a graphite-epoxy composite telescope barrel to minimize thermal effect. The

spectrometer consists of a concave holographic grating with detector assemblies located at the
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Figure 2.27 SAGE-II sensor assembly (from Mauldin et al., 1985a,b).

zero- and first-order reflection of the grating. The difference between SAGE-I and SAGE-II

instruments is primarily in the number of spectral channels employed. For SAGE-I, there were

four spectral channels at 1.0, 0.6, 0.45, and 0.385 micron center wavelength, with silicon

photodiode detectors located at the first-order reflection of the grating on the Rowland Circle.
For SAGE-II, there are seven spectral channels at 1.02, 0.94, 0.6, 0.525, 0.453, 0.448, and 0.385

microns. All of the channels use silicon photodiode detectors, with five located on the Rowland
Circle, while the 0.94 and the 0.453 micron channels are situated at the zero-order reflection of

the grating. The SAGE-II spectrometer layout is shown in Figure 2.28. The spectral bandwidth
for the four channels on SAGE-I was about 30 nm. For SAGE-II, all the channels have a

bandwidth of 15 nm except for the 0.448 and 0.453 micron channels which have bandwidths of 2

and 3 nm, respectively.

Another difference between SAGE-I and SAGE-II instruments is the scan mirror coating.

SAGE-II uses a simple quartz-coated silver substrate mirror, while SAGE-I used a multilayer

dielectric-coated silver mirror that was specially designed for minimizing the change in re-

flectivity across the scanning angular range. Both coatings were designed to produce changes in
reflectivity of not more than 0.1 percent per degree mirror rotation over the operational angular

range. Preflight measurements were not sufficiently accurate to verify the designed specifica-

tions, but placed an upper bound of 0.5 percent change per degree mirror rotation.

Detailed descriptions of the SAGE-I and SAGE-II instruments have been given elsewhere

(McCormick et al., 1979; Mauldin et al., 1985a,b). A comparison of the characteristics of the two
instruments is shown in Table 2.8.

During each spacecraft sunrise or sunset event, the instrument is activated when the
Sun-presence sensor indicates a Sun intensity of at least 1 percent relative to the unattenuated
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Figure 2.28 SAGE-II spectrometer layout (from Mauldin et al., 1985a,b).

Table 2.8 Sage Instrument Characteristics

Subsystem SAGE-I SAGE-II

Telescope 5. I cm dia 5.1 cm dia

F/30 cassegrain F/30 cassegrain
Scan Rate 15'/sec 15'/sec

Instantaneous

Field of View 0.5' dia. 0.5' elevation
2.5' azimuth

Azimuthal

Pointing Accuracy 0.5' 0.5'

Sample Rate 64/sec 64/sec
(4/km) (4/km)

Wavelength

Separation
(at 600 nm)
Detector

Holographic Grating

Spectrometer
30 nm

Silicon Photodiode

Holographic Grating

Spectrometer
15 nm
Silicon Photodiode
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Sun. The instrument then searches for and locks onto the Sun in azimuth within 1' of the

radiometric centroid. The scan mirror fast scans (3°/s) in elevation until the Sun is acquired in

elevation, then it scans vertically across the face of the Sun at a rate of 15'/s, reversing itself each

time a Sun limb crossing occurs. Figure 2.29 illustrates a typical data-taking sequence for a sunset
event. The two solid lines denote the image position of the top and bottom of the solar disk as

viewed from the spacecraft with atmospheric refraction properly included. The left vertical

ordinate denotes relative angle measured from the spacecraft coordinate system in arc-minutes,

while the right vertical ordinate denotes the corresponding vertical tangent altitude. The

horizontal abscissa denotes event time in seconds for nominal orbital geometry. The dashed line

represents the up-and-down scan of the IFOV with respect to Earth's horizon. Radiometric data
for each channel are sampled at a rate of 64 samples per second.

2.5.3 Prelaunch and Inflight Instrument Characterization

Both SAGE-I and SAGE-II instruments underwent extensive preflight testing. Component

and system-level tests that were performed include scan mirror reflectivity, telescope modu-

lation transfer function, grating efficiency, detector spectral response, detector response tem-

perature sensitivity, spectrometer wavelength calibration, individual channel spectral bandpass

(in-band and out-of-band) responses, stray light test, scan mirror linearity test, and full-Sun scan

on the ground. Considerable effort also went into the setting of the gain for both SAGE-I and
SAGE-II instruments to ensure that the full-scale count level for each channel would be neither
saturated nor too low.

As stated previously, absolute calibration of the measured radiance is not necessary since all

the measurements are nearly self-calibrating. To reduce any thermal change during the mea-

surement, large thermal inertia has been built into the hardware; both instruments have

demonstrated less than 0.3 K change in temperature during measurement events.
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Changes in mirror reflectivity with angle during the occultation are also a potential source of

error. For SAGE-II, a simple quartz coating over a silver substrate was used; the ERBS spacecraft

is periodically turned upside down so that the scan mirror reflectivity can be tested across its

entire angular range using the unattenuated Sun. Results of the measurements have been used

to correct the radiance data for any change in reflectivity with mirror angle. These corrections,

however, are very small (between 0.02 to 0.1 percent per degree).

The coating for SAGE-I is a multilayer dielectric over a silver substrate designed to minimize

the change in reflection versus scan angle. Inflight testing of the SAGE-I scan mirror over the

observing view angles was not possible, however, because the spacecraft could not be maneu-

vered to view the unattenuated Sun at all scan angles. The SAGE-I scan mirror did measure the

unattenuated Sun from tangent height of 100 km to about 250 km. By analyzing the scan mirror

reflectivity over the restricted angular range, and assuming linear extrapolation is justified, the

results suggest that the SAGE-I scan mirror reflectivity change with angle for the ozone channel
is about the same as the SAGE-II scan mirror.

2.5.4 Sources of Error in Ozone Profiles Derived From the SAGE-1 and SAGE-II
Measurements

This section has been generated from a careful study of all error sources in both the

measurement and retrieval processes. Most error sources considered here can be quantified with

careful analyses of the known engineering parameters or other measurement parameters. If

insufficient information was available for assessing the uncertainty magnitude, then a con-

servative approach was taken to estimate the error. For error parameters that could be magnified

by propagation through the retrieval process, the sensitivity of the retrieved ozone accuracy to
those error sources was then determined by a simulation and retrieval study.

The characteristics of the error sources can generally be classified into two distinct categories:

systematic and random components. Accuracy in trend determination is usually limited only by

the magnitude of any varying part of the total systematic error, and should not be susceptible to

the random-error component. However, random-error is unimportant in trends determination

only if sufficient sampling of the measurements can be obtained such that the averaging process

(or any other statistical means) can be used to reduce the random-error component to an

insignificant level. There is also an error component that is partly random and partly systematic.
An example of this type of uncertainty is errors with long correlation times. The effect of this type

of error for measurements with limited sampling is difficult to assess unless the complete statistic

of the error is known. It is possible that the uncertainty in reference height determination for the

SAGE-II algorithm belongs to this type of error.

In the following, individual error sources for the SAGE-I and SAGE-II ozone measurements

are discussed, and the derivation of the ozone sensitivity factors is explained. The ozone error
sensitivity factors discussed here apply only to the retrieved ozone concentration versus

geometric height data, and not to any other derived parameters such as ozone-mixing ratio on

pressure levels.

Ozone Absorption Cross-Section Error

The ozone Chappuis band absorption coefficient data used in the SAGE-I and SAGE-II
processing are those measured by Penney (1979). The precision of the absorption data was

estimated by the experimenter to be about 2 percent. However, the room temperature Hg line
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measurements in the UV at 296.7 nm and 302.15 nm showed a 6 percent difference from Hearn's

(1961) results. Thus, the ozone cross-section values used by SAGE-I and SAGE-II could be
associated with a lo- error of 6 percent.

There is also an uncertainty of 0.5 percent in the Rayleigh cross-section used at 600 nm, which

is insignificant compared to the ozone cross-section error. Neither of these varies with time.

Scan Mirror Calibration

Calibration of the SAGE-II scan mirror reflectivity versus angle was possible during the

spacecraft pitch 180 ° exercise (spacecraft titled upside down in orbit). The resulting data have
been least-squares fitted to determine the linear coefficients for the correction of mirror re-

flectivity with scan mirror viewing angle. In all seven channels, the data show small reflectivity
changes with angle, and the estimated errors on those coefficients are about the same order of

magnitude. To assess the sensitivity of the retrieved ozone to the scan mirror calibration factors,

a typical measurement event has been processed with and without the scan mirror reflectivity

correction factors. The difference between the two retrievals is illustrated in Figure 2.30, showing
a small difference below 40 km altitude and about 1 percent difference above 45 km altitude.

For SAGE-I measurements, scan mirror calibration was impossible to perform in orbit. The

only way to assess the scan mirror reflectivity change is by analyzing the mirror reflectivity when
the Sun is high above the atmosphere. Using mirror reflectivity data between 160 km and 100 km

tangent altitude, no observable change was found. Assuming that one can extrapolate the mirror

reflectivity behavior to viewing angles corresponding to atmospheric heights, one should expect
very small changes in mirror reflectivity. Therefore, a doubling of the error for SAGE-II scan

mirror reflectivity uncertainty has been assigned to the SAGE-I scan mirror reflectivity change.

Figure 2.30
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Aerosol Interference

Due to the overlapping of aerosol signature in the ozone channel at 600 nm, a small residual
aerosol contamination of the ozone profile at heights where high aerosol concentrations occur

could exist. Error analyses based on simulation and retrieval studies of the aerosol interference in

the SAGE-II ozone profile have been performed for typical 1985 aerosol profiles (Chu et al.,
1989). The results indicated that, for altitudes above the aerosol (typically above 25 km), aerosol

interference in the ozone profile is insignificant. However, for altitudes below 25 kin, where the

aerosol content is high, up to a 4 percent error in the retrieved ozone could be contributed by the

aerosol signature. A similar study on the SAGE-I measurements shows approximately the same
size error, even though the aerosol content during 1979-1981 was lower by a factor of five. This is

caused by the inaccurate characterization of the aerosol extinction versus wavelength behavior
obtained when only SAGE-I's two wavelength channels for determining aerosol properties are
available.

Reference Height Uncertainty

Due to the high vertical resolution of the SAGE measurements, the sensitivity of the retrieved

ozone profile to height determination becomes important. Figure 2.31 shows a simulation and

retrieval study of the ozone profile sensitivity to reference height error. Based on an error study
on the determination of reference height from the calculation of orbital and solar ephemeris data

(J. Buglia, unpublished report, 1987), it is estimated that the SAGE-II reference height error is

approximately 0.2 km, and for SAGE-I it is about 0.35 km. However, the SAGE-I processing

algorithm also included a slight adjustment on the reference height by fitting the measured

atmospheric airmass data to those computed from the National Meteorological Center (NMC)

temperature-versus-height data. Thus, the reference height error on SAGE-I should be ap-

proximately the same as the SAGE-II error, even thought the statistic of this error for the two
experiments will be very different because of the readjustment process in the SAGE-I algorithm.

Figure 2.31
altitude.

80 I I I I i I

I

40

_ 0 - -

-20 I

-40 I [ I I 1
10 20 30 40 50 60 70

HEIGHT (km}

Sensitivity of SAGE-II ozone retrieval to reference altitude errors (%/km), as a function of

59



INSTRUMENT CALIBRATION AND STABILITY

In comparing SAGE and SAGE-II ozone data, a possible systematic error component could

exist due to the different reference height determination schemes applied to the two satellite

systems. These errors arise partly from offsets in the NMC data sets used between the SAGE-I

and SAGE-II time frames, and partly from an offset between the NMC data and the ephemeris

data. Preliminary results from the analyses of the SAGE-I and SAGE-II data indicated that this
error is small and is bounded by a maximum height difference of 60 meters. This would introduce

at most a 1 percent systematic error in the SAGE-I to SAGE-II ozone comparison at about 40 km
altitude and makes no significant contribution to the total error when root-mean-squared with

other error sources. In addition, according to Buglia (unpublished report, 1987), the errors on the

SAGE-II reference height calculated from the ephemeris data are generally correlated over a

7-day period coincident with the periodic updating of the spacecraft orbital tracking data. This

would imply that the reference height errors on SAGE-II can be treated as systematic errors for

ozone data covering spans of approximately 7 days, and can be treated as random errors for data

covering spans of several weeks or more.

Random Error

The random errors for the retrieved ozone consist of contributions from the measurement

errors of the atmospheric transmission data, the Rayleigh component calculated from the NMC

temperature-versus-height data, and random error contributed from the aerosol measurements.
Aerosol analyses based on the propagation of uncertainties in the SAGE-I ozone retrieval (Chu

et al., 1989) have been used to estimate the precision of the SAGE-I and SAGE-II ozone profiles.
It is found that the measurement error is the dominating source of uncertainty in limiting the

precision of the SAGE-I and SAGE-II ozone values to a level of about 10 percent between cloud

top to 60 km (SAGE-II), and to 50 km (SAGE).

Budget for Trend Errors in SAGE-I and SAGE-II

Combining the independent systematic errors cited above in the first four items results in the

total errors shown in Table 2.9 and plotted in Figure 2.32. (The more conservative altitude

registration error of 0.35 km is used for SAGE-I.) These are the values relevant in a comparison
with other instruments. However, these are dominated by the constant ozone cross-section

error. Removing this, and considering that the mirror or altitude registration error could vary by

the amounts indicated over 2 years, gives the uncertainty in observed changes, which are also

shown in Table 2.9 and in Figure 2.33. These are dominated by altitude registration uncer-

tainties, which seem more likely to be random than characterized by a trend, so these errors, too,

are probably conservative.

It should be emphasized that these errors do not necessarily represent the changes that could
be seen by SAGE-I and SAGE-II over their 2-year periods of operation. To determine such a

change requires a sufficiently large number of observations at a given location under similar

seasonal conditions, with a meteorological situation that allows a representative longitudinal

average to be obtained. The limited data taken by SAGE-I or SAGE-II do not necessarily fulfill

these conditions. The numbers in Figure 2.33 should be regarded as suggestive. However, as

SAGE-II continues in operation, the same total errors will apply over a longer period with more

data and, presumably, improved sampling, allowing it to observe any changes of this

magnitude.
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Table 2.9 Errors of SAGE-I and SAGE-II (all errors in percent)

SAGE-I

Ozone Abs. Altitude

Altitude Cross-Section Mirror Resistration Aerosols

Total

Error

Error in

Changes

20 6 0 0 4 7.2 4

25 6 0 1.5 1 6.3 1.9

30 6 0 2.9 .5 6.7 2.9

35 6 .1 4.4 .2 7.4 4.4

40 6 .2 5.8 0 8.3 5.8

45 6 .5 7.3 0 9.5 7.3

50 6 2 8.8 0 10.8 9.0

SAGE-II

20 6 0 0 4 7.2 4

25 6 0 .8 1 6.1 1.3

30 6 0 1.7 .5 6.3 1.8

35 6 .05 2.5 .2 6.5 2.5

40 6 .1 3.3 0 6.8 3.3
45 6 .25 4.2 0 7.4 4.2

50 6 1 5.0 0 7.9 5.1
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Figure 2.32 Combined systematic errors in SAGE ozone profiles.
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Figure 2.33
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2.5.5 Error Budget of the Difference Between SAGE-I and SAGE-II Ozone Retrievals

There are three error sources that can produce a consistent difference between SAGE-I and
SAGE-II ozone results besides the aerosol interference, which is transient in nature. These error

sources are the relative uncertainties in the mean ozone absorption cross-sections for the two

instruments, the scan mirror calibrations, and any systematic difference in the reference height.

Relative Uncertainty in the Mean Ozone Absorption Cross-Section

The ozone channels for SAGE-I and SAGE-II are both nominally centered at 600 nm, with

nominal widths of 30 nm and 15 nm, respectively. The factor that affects the ratio of SAGE-I to

SAGE-II ozone determinations is the ratio of the two mean absorption cross-section values R,
defined as

R = _1/_'2 (19)

fw o.(h)dh/wl

fw o.(A)dh/w2

where o'1 and o-2 are the mean ozone absorption cross-sections over the bandwidths wl

and w2 for SAGE-I and SAGE-II, and o(A) is the ozone absorption cross-section.
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By partitioning wl into regions w2, Ws, and WL, where the latter are regions within wl at

wavelengths shorter and longer than w¢, respectively, and introducing 6 for the uncertainty in

the absorption cross-section, Equation 19 may be written

R + 8R = (20)

• (r(A) + 6(A)ldA + w__ --. (r(A) _+ 6(A)]dA +-
W 1 W 1 W2

fLier(A) +---_(M]dA
Wl

1 fs[O.(A) +__ _(h)]dA
W2

1 fwjr(,_)d A +1 [ w2_2+_
_'2 Wl Wl

1 1 ]
Wl fwL O'(_t)d}t _ _ fWs_(_)d_wl ± fWLe_(_)d,_

Note that any uncertainty in the cr(,U that is used in w2 has no effect, because the identical

values are used in that part of wl.

In WS, L we can define

1

"_s,L - _,L fS, L cr(A)d_ =- aS, L_2
(20a)

In the last two terms in Equation 20, expressing the uncertainty, if _ has the same sign at all
frequencies in S or L (a worst case), then

W2 W S WL
R - +--as+--aL (20b)

Wl Wl Wl

and

_S W8 ¢_L WL
_R 1 = -+-----+---- (20c)

_2 Wl _ wl

Since Ws, L/Wl _- 0.25, and Penney (1979) indicates that _/82 -_ 0.02, then, very conservatively,
_R 1 = 0.01.

There is another uncertainty, 3R e, because the widths w_, w2, Ws, and WL are not known

exactly, but subject to the constraint that w2 + Ws + WL =- Wl. Evaluating the relevant
expression gives 3R e = 0.0045.

The errors 3R _ 2and 6R are independent; their RSS is 1.1 percent. To be conservative and allow

for other possible small terms, we take 1.2 percent as the uncertainty in the relative cross-sections
in Table 2.10 below.

Uncertainty in the Scan Mirror Calibration

The systematic retrieval errors due to the mirror for SAGE-II are shown in Figure 2.30. The
mirror reflectivity effects for SAGE-I are estimated to be about twice as large. These values are

presented again in Table 2.10.
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Table 2.10 Errors in the Difference Between SAGE-I and SAGE-II (all errors in percent)

Altitude Ozone abs. Mirror Mirror Alt. SAGE-I SAGE-II Root

(km) Cross-section SAGE-II SAGE-I Registration Aerosol Aerosol Sum
Difference Difference

Square

20 1.2 0 0 0 4 4 5.8

25 1.2 0 0 .25 1 1 1.9

30 1.2 0 0 .50 .5 .5 1.5

35 1.2 .05 .1 .75 .2 .2 1.5

40 1.2 .1 .2 1.0 0 0 1.6

45 1.2 .25 .50 1.25 0 0 1.8

50 1.2 1 2 1.5 0 0 3.0

Systematic Differences in SAGE-I/SAGE-II Reference Height

As noted above, there may be a maximum error between the reference heights of SAGE-I and

SAGE-II of 60 m. Combining this with the sensitivity curve in Figure 2.31 results in the
uncertainties given in Table 2.10.

Combined Instrumental Error of SAGE-I/SAGE-II Differences

The errors noted in the three items above, plus contributions due to aerosols, are given in
Table 2.10. Their combined value, treating the errors as independent, is given in the last column,

and plotted in Figure 2.34. It should be noted again that there may be errors resulting from the

sampling and data sparseness.

60

5O

U3

40
I--

3O

2O

i 1 I

2 4 6

UNCERTAINTY IN OZONE CHANGE

Figure 2.34 Uncertainty in ozone change determined from SAGE-I/SAGE-II differences.
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The differences reported in Chapter 5 were obtained by pairing soundings taken at the same

latitude and season during 2 years of operation of each instrument. This does not entirely

eliminate the possibility of a systematic error due to the interaction of the sampling and the

interannual variability, but the magnitude of such an effect has not been quantified at this time.

The errors given in Table 2.10 and Figure 2.34 are the instrumental errors associated with the
differences.

2.6. SOLAR MESOSPHERE EXPLORER (SME) UV OZONE AND NEAR INFRARED
(NIR) AIRGLOW INSTRUMENTS

The SME UV Ozone and Near Infrared Airglow instruments were launched aboard the SME

satellite on October 6, 1981. The satellite is in a polar orbit that is Sun synchronous and spins once

every 12 seconds. The instruments take data from sunrise to sunset when the IFOV's are at the
limb. Ozone data are recovered from 48-70 km from the UVS and from 50-90 km from the NIR.

The two instruments overlap their altitude coverage by approximately 20 km, allowing an

internal comparison of the ozone trend to be made. Data are taken at Earth's limb with an altitude

resolution of about 4 km over a slant path hundreds of kilometers long. Figure 2.35 shows the

observing geometry of both instruments. Ozone is deduced by independent physical means
from the two instruments; however, satellite parameters, such as altitude of the observations,
are common to both instruments.

ORBIT

\
\

45 DEG.
3:00 P.M.

ASCENDING NODEj

ALTITUDE
520 km

SPIN AXIS

INCLINATION: 97.5

EQUATOR

PATH

/
/

Figure 2.35 SME orbit and scan geometry.

65



INSTRUMENT CALIBRATION AND STABILITY

SME experienced two problems after launch that had an unplanned effect on the two ozone

instruments. First, the operating temperature of the instruments was approximately 40°C less
than was anticipated. This resulted in operational problems with the diffraction grating drives,

and the decision was made early on not to move them more than was necessary. This did not

cause serious problems for the NIR as it was designed to work mainly at a single wavelength. The

UV instrument science was restricted however, since the atmospheric altitude band of the ozone

retrieval is very wavelength dependent. The instrument operates over the Hartley ozone region.

Wavelengths with large ozone cross-section give good ozone retrievals at high altitudes where

the ozone abundance is small, and wavelengths with small ozone cross-section give good results

where the ozone abundance is large. It had been hoped to move the wavelengths over the entire
Hartley band to give full altitude coverage. Instead, the mission was accomplished at a single

wavelength pair that corresponded to ozone recovery in the 1.0q).1 mb (48-70 km) altitude

regions.

The second problem was the inability of the passive cooling device on the long wavelength

infrared radiometer to reduce the detector temperatures to the point where they could provide

an accurate pressure altitude for the coaligned instruments on board. This resulted in a serious

problem in recovery of the all the IFOV altitudes at the limb. The altitudes are now derived
approximately from the spacecraft bus IR horizon sensors that are part of the spacecraft attitude

control system and then further refined using the actual data from each horizon scan from the

UV ozone instrument. Final determination of altitude accuracy of the FOV at the limb is stated to

be approximately I km. The derived altitude of the FOV of the UV ozone instrument was used for
all the instruments on board the satellite. The UV ozone and NIR instruments were turned off in

December 1986.

2.6.1. UV Spectrometer

2.6.1.1 Physical Principles

The technique is described by Rusch et al. (1984) and in User's Manual (Mount, 1982). Figure
2.36 illustrates the geometry and the physical processes. The radiance measured by the UVS at

wavelength ,L I_, looking at an altitude z0, can be written as

I (zo) : (21)

where F_ is the solar flux, and o- and ¢(_b) are the Rayleigh scattering cross-sections and phase

function for scattering angle (p. Ts (s) is the transmittance of solar radiance to the scattering point

s, N(s) is the volume density of Rayleigh scatters at s, and To3 and TR are the transmittances after

attenuation by ozone absorption and Rayleigh scattering, respectively, between the scattering

point and SME, taken to be at + _. Only single scattering is included for the altitudes of interest.

As the data are now reduced, data from the long wavelength channel (296.4 nm) are used to

determine the density at a level where ozone absorption is negligible (TQ(s,a) = 1). In this case,

I/F depends only on the number of scatterers (i.e., the density) that can be related to an

approximate height using the proposed COSPAR International Reference Atmosphere (CIRA)

model atmosphere (Barnett and Corney, 1985). This incorporates climatological latitudinal and

seasonal variations, but not the effects of short-period disturbances or systematic longitudinal
variations. The density level selected corresponds to an altitude of about 65 km. The exact

altitude depends on the ratio of the absolute calibrations of the UVS and the separate solar

instrument (Rottman et al., 1982) as well as on meteorological effects.
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Figure 2.36 The geometry of limb viewing with the UVS on SME. Zo is the minimum ray height of the 3.5 km
vertical resolution of the measurement (from Rusch et al., 1984).

With the density and altitude point determined from the long wavelength channel, the short

wavelength channel (265.0 nm) radiance profile is then adjusted in magnitude to force agree-

ment with the model Rayleigh scattering at 76 km altitude where the short wavelength channel

ozone absorption is negligible. Only the relative shapes of the radiance profiles from the short

wavelength channel are needed to deduce ozone abundance once these shifts are made, and the

shapes depend only on atmospheric Rayleigh scattering and ozone abundance. It is very
important to note that the absolute calibration of only the long-wavelength channel is required in
the determination of ozone abundance. Neither the absolute nor the relative calibration of the

short wavelength channel plays a role.

There was no plan for long-term calibration, since the mission was originally specified to last

for 1 year. The expectation, apparently, was that there would be no serious degradation over this

period, and the experimenters were directed not to plan for longer instrument life. The UV
instrument did not incorporate an internal calibration lamp. Two features helped to reduce

degradation over the 5 years in orbit. First, the SME was a very clean spacecraft, resulting in less

outgassing that could contaminate the optical surfaces. Second, the UVS did not view the Sun, so

solar dissociation and fixing of contaminants on the optics could not occur.

2.6.1.2. Instrument Description and Prelaunch Testing

The instrument and its testing have been described by Rusch et al. (1984) and in User's

Manual (Mount, 1982). The collecting telescope is a nonobscured f/5, 250-ram focal length

off-axis parabola. The telescope feeds an f/5, 125-mm Ebert-Fastie spectrometer employing a
3600 1/mm diffraction grating. Spectral resolution is approximately 1.5 nm. Dual channel

detectors are EMR 510-F-06 photomultiplier tubes. Figure 2.37 shows a schematic diagram of the
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Figure 2.37 Schematic drawing of the SME UV spectrophotometer. Two views are shown rotated 90° with
respect to each other. The detector assembly houses two photomultiplier tubes and pulse-counting electron-
ics (from Rusch et al., 1984).

UV ozone instrument. Calibration tests performed on the instrument and its components were

grating efficiency, grating scatter and ghosts, grating polarization, mirror efficiency, mirror

off-axis scatter, mirror RMS surface roughness, detector dead time, detector efficiency, detector

sensitivity maps, absolute instrument efficiency, instrument off-axis scatter, instrument wave-

length calibration, instrument polarization, FOV sensitivity variation, and spectral bandpass.

The instrument absolute calibration for wavelengths of less than 260 nm was made using a

system similar to the Johns Hopkins CTE, which utilizes NBS photodiodes and transfer photo-
multiplier tubes as the standards. For wavelengths greater than 240 nm, NBS standard tungsten

strip filament lamps were used, either focused directly onto the ozone spectrometer entrance slit

(with telescope removed) or onto a BaSO4 scattering screen with the telescope on the instrument.

The resulting (one sigma) error budget was wavelength less than 240 nm: _ 25 percent; 240-270

nm: + 12 percent; 270-320 nm: + 10 percent; and greater than 320 nm: ___15 percent. Wave-

lengths used in flight were 265.0 nm and 296.4 nm, and so the absolute calibration for the

retrieval wavelength pair was about + 10 percent (one sigma). These wavelengths provide
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information on ozone from about I mb-0.1 mb. A relative sensitivity shift of the two channels,

noted after launch, results in an absolute sensitivity determination of about 20 percent (one

sigma).

Figure 2.38 shows the altitude-dependent errors resulting from the inversion process for each
indicated calibration measurement. The UV ozone instrument retrieves the ozone abundance in
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Figure 2.38 (a) Random altitude-dependent errors associated with noise and data compression (dashed

dot line) and temperature and pressure (dashed line). The solid line is the rms sum. (b) Systematic
altitude-dependent errors associated with uncertainties in instrument sensitivity (dashed line), instrument
polarization (dash-dot-dot-dash), dead-time constants (dotted line), and ozone cross-sections (dash-dot-
dash). The solid line is the rms sum. (c) The altitude-dependent error from combined random and systematic

errors (from Rusch et al., 1984).
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the 1-0.1 mb region with an overall accuracy of approximately 21 percent (one sigma), which

includes errors caused by using model atmosphere that may differ from the real atmosphere,

although the differences are not expected to be significant from year to year. The use of

temperatures determined from Wallops Island (U.S.) rockets fired during satellite overpasses

results in insignificant changes in the retrieved ozone from the model assumption.

FOV limb altitudes are determined by comparison of the Rayleigh-scattered radiance mea-

sured with that calculated from modeling this signal using the relevant solar fluxes, cross-

sections, and the proposed CIRA model. The normalization in altitude is done at 65 km in the

long-wavelength channel (296.4 nm), where no ozone absorption is detectable and the Rayleigh
scattering is optically thin. The altitude is then considered by the SME science team to be

determined with an accuracy of approximately I kilometer, based on uncertainty in the absolute

calibration, with a repeatability of 0.3 km. Figure 2.39b (taken from Barth, Rusch, Clancy, and

Thomas [BRCT], unpublished report, 1987) shows the required corrections to the spacecraft IR

horizon sensors for a particular orbit and the limb sensor altitude determinations themselves

(Figure 2.39a). Sensitivity to the long-wavelength channel absolute calibration is about I km per

15 percent change in long-wavelength channel calibration.

Several factors affect the ability of the UV ozone instrument to detect ozone abundance

trends: changes in the absolute calibration of the long-wavelength channel of the instrument,
since it determines the model normalization at 65 km, which in turn determines the absolute

altitude of the FOV; reliance on a model atmosphere that has seasonal and latitudinal changes,
but that is assumed to be the same every year and has no local spatial or rapid temporal

variability; drift in the wavelength drive, resulting in incorrect use of ozone cross-sections and
solar fluxes; changes in the solar flux at the long-wavelength (296.4 nm); and changes in

instrument polarization as a function of time.

2.6.1.3 Performance in Orbit

The UV ozone instrument incorporated no internal calibration lamp. The tropical back-

ground radiance was monitored for about a year after launch; there was no apparent change in
either of the two channel radiances, other than the expected seasonal changes, to a level of about

10 percent.

The wavelength drive has been checked regularly since launch, and shows a very small and

easily corrected change that is known to a very high degree of accuracy from wavelength scans of

the scattered solar light. Based on the SME solar instrument measurements of solar flux, no

correction is applied for a time-dependent solar flux.

Since launch, there has been an observed time-dependent trend in the altitude correction

deduced from the UV instrument relative to the spacecraft IR limb sensors that can be explained

by a 9 percent per year change in total instrument sensitivity. Observation of the altitude shifts

over time since launch indicate that these shifts are correlated with the roll angle of the spacecraft

and with the resulting tilt of the entrance apertures of the instruments, which were designed to

operate on a tangent to Earth's limb. The orbit was optimized for operation during the first year

after launch, and orbit precession has increasingly tilted the projected slits relative to the

tangent. Determination of the altitude shifts during June of each year, when the roll angle is near

zero, indicates a 6 percent per year change in the instrument sensitivity. Thus, 3 percent can be

removed as having been caused by the changing roll angle of the spacecraft.
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There is a dual channel visible light spectrometer (VIS) on board SME that measures NO2 near

440 nm (Mount et al., 1984). The detectors used are dual silicon photodiodes, which are etched in

the same active material in the rectangular shape of the "exit slits." The instrument scans the

altitude range from about 100 km above to 20 km below the horizon. Assuming that the

wavelength-dependent scattering properties of the atmosphere at 48 km have not changed since

launch and that there is no measurable NO2 absorption in the visible spectrum at 48 km (a good
assumption), then it is determined that the relative drift of the diodes witlq respect to each other

is 0.4 percent/year. This is quite reasonable, since the diodes are physically located only a few

millimeters apart. The absolute calibration of the diodes and the associated analog electronics is

not known, but the relative drift of the two diode channels relative to each other is expected to be
small since the diodes are from the same piece of silicon. No onboard electronics test of standard

current levels was provided. There is evidence that the electronics drift is less than 1 percent per

year, since the electronic offset added to the electrical signal from the photodiodes has remained

very stable over the 5-year life of the mission.

2.6.1,4 Assessment of Instrument Drift and Its Effects

The following discussion is based in part on BRCT. Assuming that the VIS diodes have not
drifted in absolute calibration, and ratioing their observed signal near 440 nm at 48 km to the

observed signal from the UV spectrometer long-wavelength channel at 76 km altitude (where

ozone absorption should be negligible), leads to a deduced change in the UV instrument

long-wavelength channel sensitivity at 296 nm of -4.8 percent/year +1.4 percent/yr. This

change in sensitivity then translates into an ozone change at 0.75 mb (53 kin) averaged over

0-60°N latitudes in the summers of +1.6 percent/year since launch, with a range from +4.1
percent/year-(for smaller instrument degradation) to -0.7 percent/year (greater instrument

degradation). These error bars are a measure of the statistical variation in the summer data from

each year and do not include algorithm-related errors in the ozone retrieval. The SME UVS

shows an ozone trend bounded by a range + 4.1 percent/year to - 0.7 percent/year assuming no

change in the absolute calibration of the visible spectrometer photodiodes.

The ozone trend determined from this method depends on the assumptions that there will
be:

• No change in the absolute calibration of the visible instrument photodiodes.

• No change in the calibration of the analog electronics that convert the photodiode signals to
data numbers.

• No shift in the positions of the two instrument fields of view in relation to each other.

• No nonseasonal changes in atmospheric albedo and temperature effects between 48 and 76

km between 1982 and the present.

• No nonseasonal systematic drifts of atmospheric shape with time.

While changes in the VIS photodiode sensitivity are expected to be small, there is no way to

verify that this is, indeed, the case. The SME science team feels that it would detect changes in

the diode sensitivities of the order of several percent per year since this would change the

response to NO2. There is also no way to measure changes in the analog electronics. The relative

sensitivity drift of the two photodiode channels is 0.4 percent/year, indicating that the diodes

72



INSTRUMENT CALIBRATION AND STABILITY

and their absolute sensitivity could well be changing in a similar manner. There has been very
little stress on the diodes, since the operating current is six decades below the nonlinear

operating point. The diodes are operated in photovoltaic mode, so there is no voltage stress on
them. No increase in noise level has been observed. Measurements of polar albedo (which is

expected to remain fairly constant) taken in the nadir indicate approximately a 10 percent change

in 5 years. Assuming no change in albedo due to aerosols (El Chich6n) and other factors, this

gives a 2 percent/year photodiode sensitivity change. There is no reason to expect that the FOV's
have shifted relative to each other. Atmospheric effects should be small, but are again not

verifiable. Therefore, the SME science team has set a limit on the change of the photodiode

calibration at I percent per year __+1 percent per year; in this assessment, the worst case value of 2

percent per year has been used.

There is evidence from the SME solar instrument that SME is a particularly clean satellite

because there is no evidence of significant degradation of the optical surfaces in that instrument.
It is reasonable to conclude that it has not occurred in other instruments. Thus, any sensitivity

degradation in the UV spectrometer is assumed to be mostly in the photomultiplier tubes. The

tubes were used in the pulse-counting mode, which makes them initially insensitive to changes

in gain with increasing total count rate. The tubes were used in orbit at rates of several hundred
thousand counts per second, which are conservative rates. The long-wavelength channel

photomultiplier would suffer count-rate degradation first, since its count rate is more than twice
that of the other channel. This is in agreement with the determination above. The changes in

solar flux have been negligible at these wavelengths, and there is no reason to suspect that the

polarization of the optics has changed. It is important to repeat that only the long-wavelength

channel absolute calibration is required for the altitude determination, and even the relative
calibration between the two channels is not needed for ozone determination.

2.6.2. Near Infrared (NIR) Instrument

2.6.2.1 Physical Principles

The physics of the ozone retrieval on the NIR instrument is quite different from the UV

instrument, which measured relative absorption in two channels. The approach is described by

Thomas et al. (1984). The most important processes are indicated in Figure 2.40. Photo-
dissociation of ozone by solar radiation

03 + hv(210 < A < 310nm)---> 02(_hg) + O(1D) (22)

and other processes lead to the formation of O2(1A_). Some of these molecules are quenched,

while others radiate. The NIR measures the emission by O2(1_s) at 1.27#m. Deduction of the

ozone from the O2(aAs) emission depends on ozone absorption, Oa absorption, ozone photo-

dissociation, the solar flux in the UV and visible/red, and quenching of excited oxygen. Rate

constants and cross-sections must be known, photochemistry must be correct, and a correct
background atmosphere must be used.

In particular, the signal will depend on solar radiation and its spectral variations and on

atmospheric temperature. The retrieval is made from approximately 50-90 km. The retrieval

requires that the absolute radiance at 1.27/zm emerging from the atmosphere be measured.

Again, planning for long-term operations was not part of the preflight strategy, but the NIR
included an inflight calibration source to allow measurement of, and correction for, instrument
drift.
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Figure 2.40
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NIR physical processes (from Thomas et al., 1984).

2.6.2.2 Instrument Description and Prelaunch Testing

The optics of the NIR instrument are very similar to those of the UV spectrometer; Figure 2.41

shows a schematic diagram of the NIR. The detectors are chopped lead sulfide photoconductors
with immersion lenses cooled by radiation to space. The following quantities were measured

during calibration: absolute sensitivity, spectral bandpass, polarization, wavelength scale, FOV,

off-axis scatter, time response, out-of-band leakage, linearity, and thermal characteristics. The

absolute sensitivity was determined with an NBS-calibrated tungsten strip filament lamp. The

filament was focused on a barium sulfate screen producing a diffuse light of known intensity.
Absolute calibration was accurate to about 20 percent.

The NIR spectrometer had an onboard calibration source. A small tungsten lamp, a silicon

photodiode, and a thermistor were placed at the edge of the f/5 telescope beam near the entrance

slit of the spectrometer (Figure 2.41). Light scattered from the baffles enters the spectrometer,

and, if the time-dependent calibration of the system is understood, the relative time-dependent

response of the instrument (not including telescope) can be deduced. The brightness of the lamp

depends on its operating conditions (such as temperature and voltage) and changes as it ages.
The photodiode measures the lamp brightness; since it is temperature sensitive, a thermistor is
placed next to the diode. The system is not a precise calibration for short-term use, but should

detect major short-term changes. For long-term changes it is very useful.

2.6.2.3 Performance in Orbit

One hundred forty-nine calibrations were performed after launch. The following conclusions
have been drawn from the calibrations: comparison of the two NIR detector channels indicate

that the brightness changes of the lamp are changes in the black-body temperature of its

filament, and the photodiode output has been determined and shows that the change in its

sensitivity over the mission is small. Normalized sensitivity of the 1.271am detector is shown in

Figure 2.42. The result is an increasing sensitivity of only 0.28 percent + 0.15 percent per year.
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Figure 2.41 Optical scheme of the near-infrared spectrometer. Light enters the telescope through a baffle
assembly. The light is focused onto the entrance slit and chopper. In the monochromator, the chopped light is
collimated by the Ebert mirror onto the grating. The Ebert mirror then focuses the dispersed light onto the
detectors, which define the exit slit. The detectors are passively cooled by a radiator on the outside of the
instrument (from Thomas et al., 1984).
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Figure 2.42 Normalized NIR photodiode sensitivity through the mission (from BRCT).
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Thus, from the inflight calibration checks it appears that the instrument was very stable over
time.

The derived ozone profiles from the NIR spectrometer overlap those determined from the UV

ozone instrument in the 50-65 km region. The NIR results were adjusted by 10 percent to force a

match between the two instruments for the time period immediately after launch. This adjust-
ment has been used since then without change. The trends from the two instruments have

diverged since launch if the preflight calibration values are assumed.

2.6.2.4 Sources of Instrument Drift

Systematic errors due to errors in rate or cross-sections, poor background atmospheric

models, and instrument calibration errors result in a 50 percent error near I mb and a 30 percent
error near 0.001 mb. Total systematic errors are shown in Figure 2.43 as a function of altitude.

Although the systematic errors are large, they will not change with time and will not

introduce drifts in the inferred ozone. A detailed discussion is contained in Chapter 3. Errors that
introduce trends into the data are changing instrument calibration, drifts between the real and

model background atmosphere, changes in the assumed solar irradiance in the UV and the red,

and dependence on the UV instrument for the altitude determination of the FOV. In this chapter,
only the effects of changing calibration and altitude determination are addressed.
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Figure 2.43 Total systematic error on ozone data estimated from input errors (from Thomas et al., 1984).
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2.6.3 UVS and NIR

2.6.3.1 Comparison of Ozone Trends From the Two Instruments

Using the standard UVS altitude corrections for both the UVS and NIR instruments with no

allowance for any changes in UV sensitivity produces the ozone trends for June shown in Figure

2.44a,b for 0.75mb averaged over 0°-60°N latitude. These changes are + 13.2 percent per year for

the UV instrument and + 2.4 percent per year for the NIR instrument. These are the data in the

NSSDC data base as of September 1987.
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Figure 2.44 UV and NIR 0.75 mb mixing ratio with time. No correction for sensitivity drift of UV LW channel
(from BRCT).
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Figure 2.45a,b shows plots of the 0.75mb data for the derived change in UV instrument

long-wavelength channel sensitivity of -4.8 percent per year as described earlier (assuming no

degradation of the visible spectrometer photodiodes). The NIR data are calculated using the

altitude shifts derived from the changed long-wavelength channel UV sensitivity. The calculated

ozone changes, 1.57 percent per year for the UV and 1.6 percent per year for the NIR, are in close

agreement.

Using the spacecraft bus IR CO2 horizon sensors, an FOV determination independent of the

UV instrument can be made for the NIR Airglow instrument. The altitude pointing determined

this way is noisier, but provides a useful check on ozone that is independent of the UV

instrument. Figure 2.46 shows the trends in ozone for the NIR instrument using this technique.
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Figure 2.45 UV and NIR 0.75 mb mixing ratio with time. Correction for sensitivity drift of UV LW channel
(from BRCT).
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Figure 2.46
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NIR 0.75 mb mixing ratio with time using the bus horizon sensors (from BRCT).

Note that the trend in ozone derived from this method (1.8 percent per year) is very nearly equal

to that derived from using the UV altitude shifts shown in the previous figure. The 0.75 mb

ozone-mixing ratios from the NIR instrument are only slightly affected by changes in the altitude
determinations, since the broad maximum of the 1.27_m airglow is near this altitude.

Figure 2.47 shows the range in the trends for 0°-60°N for June 1982-1986 that results from

inverting the UV data using two standard deviation uncertainties in the UV long-wavelength
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Figure 2.47 Ozone mixing ratios for June 1982-1986 for the UV instrument. The error bars denote the
range of the data resulting from the uncertainty in the determination of the UV sensitivity change as a function
of time assuming no algorithm retrieval error and no visible spectrometer photodiode drift with time
(from BRCT).
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channel sensitivity, assuming the algorithm physics is correct and assuming the visible photo-
diodes have not drifted with time. The values for the ozone change at the extremes of the

sensitivity changes are -0.7 percent per year and + 4.1 percent per year. When the possibility of

visible spectrometer photodiode degradation of 2 percent per year is taken into account, the

range of possible ozone trend is + 4. I percent per year to -3 percent per year for 0°-60°N in June.

2.6.3.2 Assessment

The accuracy of the absolute calibration of the SME UVS long-wavelength channel deter-
mines the accuracy to which the altitude of the FOV of this instrument can be determined. The

ozone abundance and ozone trend depend crucially on this determination. The SME science

team has used the photodiode channels on the SME visible spectrometer to correct the absolute

calibration of the UV long-wavelength channel for drift over the 5-year period in orbit. The

change in the UVS absolute calibration relative to the visible instrument photodiodes is -4.8
percent per year _+1.4 percent per year*. An observable limit to the degradation of the visible

instrument photodiodes, on which the UV calibration is based, is 2 percent per year. Including
this limit in the absolute calibration uncertainty, the ozone trend derived from the SME UV

instrument is + 4 percent per year to -3 percent per year.

A detailed analysis of the long-term drift of the NIR instrument was presented, and a
convincing case for only small calibration drifts during the 5 years in orbit was made. However,

although the NIR instrument has a reasonably determined calibration drift, which is small, the

altitude of its FOV, and hence its ozone determination, is dependent upon the absolute
calibration of the UV ozone instrument, which determines the altitude used in its inversion. This

dependence is very small at the 0.75 mb pressure level. The range of uncertainties, including

uncertainties in both calibration and altitude, is __+0.7 percent per year. Thus, the ozone trend

determination from this instrument at the 0.75 mb level is + 2 percent per year + 0.7 percent per

year.

A determination independent of the UVS altitude corrections was made from the NIR

instrument using the altitude determination from the spacecraft bus IR horizon sensors; this

analysis gave a trend of + 1.8 percent per year.

2.7 THE LIMB INFRARED MONITOR OF THE STRATOSPHERE (LIMS)

LIMS is a six-channel infrared limb scanning radiometer on the Nimbus-7 spacecraft. The

experiment and its calibration have been described in detail by Gille and Russell (1984); previous
discussions are contained in Russell and Gille (1978) and Gille et al. (1980).

*Note added in proof. Subsequently, Rusch and Clancy (1988) have claimed an accuracy in

trends of _+1.3%/year. These authors reference an oral presentation by Barth, Rusch, and

Thomas at the 1987 spring AGU meetings as the source of the + 1.3%/year trend determination
accuracy. However, it was clearly stated in the meetings that this report is based on the

___1.3%lyear number reported at AGU assumed that the visible diode instrument experienced no

drift in sensitivity. In fact, it experienced a 0 -+ 1% drift as described in Figure 2.47 above, which

must be included in the total trend error budget, as has been carefully done in this report.
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2.7.1 Principles of the Technique

The viewing geometry is the same as that shown in Figures 2.36 and 2.40, except that LIMS

measures the infrared radiation emitted by the atmosphere as it scans across the limb. At any

given measurement during the scan, when the instrument is viewing tangent altitude h above

the surface, it receives a radiance in the ith channel given by

f_ dTi(p.i) dx (23)
Ni(h) = Bi(T,x)_

where

B is the Planck function,

T is the temperature,
_"is the transmittance, and

x is the distance along the line of sight from the instrument through the tangent altitude h.

tL, is the mixing ratio of the gas that absorbs in this channel.

The general strategy is to measure Ni for channels in which CO2 is the emitting gas. Because

its mixing ratio is known, rand dr/dx maybe calculated, allowingB and thus the temperature T to

be derived. This temperature is then used to calculate B for the ozone channel (indicated by

subscript 3); from N3 and B3, the distribution of the ozone-mixing ratio, tt 3, can be derived

through the dependence of _'3 on tL3.

From this discussion it is clear that the solution depends on the absolute value of the _hr.,

resulting in a requirement for accurate calibration of the measurements.

More exactly, Equation 23 should be written

= Ci fh2fv, f _b(h-Ni( hj) hj) 6i( ,)B( ,,T(x))
J hi Jl'i, J -:_

dz

x (v,x,h;)dx dv dh

(24)

where hj denotes the jth tangent height,

C_ is a calibration constant, relating the output from the instrument to the input radiance,

¢b(h-hj) is the relative spatial response,

6fv) is the relative spectral response.

In addition, we note that

ho + j.hh

where ho is an (initially) unknown reference height, and measurements spaced _lh apart are
made on a vertical scale relative to it.

Thus, the quantities C, ¢, and _ must be known in order to determine the absolute radiance,

and the spacing zl& must be known to perform the retrievals.
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2.7.2 Instrument Description

The instrument has been described by Gille and Russell (1984), referred to below as GR. Here,

a very brief summary is given, with emphasis on those features most important for determining
the calibration and its stability during orbital operation.

A schematic of the optical train is shown in Figure 2.48. Radiation from the limb is reflected off

the scan mirror to the primary mirror, an off-axis parabola that brings the light to a focus where it

is chopped. A parabolic secondary recollimates the beam and directs it through a Lyot stop to a
folding mirror, from which it passes through relay optics, interference filters that define the

spectral response of the channels, and an FOV-defining mask, and onto mercury-cadmium-
telluride detectors. The optics from the Irtran 6 lens through the detectors are cooled to about
61 K by the primary cryogen, solid methane. The optical train out to the thermal mask was

maintained at about 152 K by the solid ammonia second-stage cryogen. The amount of methane
in the cooler limited the experiment life to 7 months.

In operation, the scan mirror caused the line of sight (LOS) to traverse the limb at a rate of 0.25

degree per second. The mirror position is controlled by a low-resolution sensor, but accurate
relative positions are obtained from a 15-bit optical encoder on the scan mirror shaft, which

nominally puts a pulse into the data stream for every 79.1 arc seconds of LOS motion, or
approximately every 1.4 km. The encoder was used to determine &h.
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To ensure that all channels scanned high enough to see cold space and low enough to view

the hard Earth, the total scan was 3 degrees, making each down or up scan 12 seconds. After

every second up-down scan pair, the scan mirror scanned up so that a small off-axis blackbody

cavity in the focal plane adjacent to the chopper, at the focus of the primary, was reflected from
the scan mirror back through the optics, in the same way a signal would be. The temperature of

the cavity was held at 308 K, and its temperature was monitored by a platinum resistance
thermometer and a backup thermistor. The cavity design should be relatively insensitive to

changes in the condition of its surface. The calibration of this inflight calibrator (IFC) will be
discussed further below.

After viewing the source for -2 seconds, the mirror scanned down to a position in which all

channels were viewing above the detectably emitting atmosphere, and viewed space for 1

second, to get a cold radiometric calibration point. The scan sequence then began again.

2.7,3 Preflight Calibration

The ability to obtain retrievals required that the absolute radiances be measured, which in

turn required that the instrument characteristics defined by zlh, qb(h), 6(v), and C(N) be known

accurately. The first three are not expected to change from the laboratory to orbit, and were
measured on the ground. The radiometric response depends on a number of factors, including

detector temperature and possible degradation in the optics, which require inflight calibration.

The latter requires that the characteristics of the IFC under different instrument conditions be
known.

Encoder Spacing

The repeatability of a given pulse position was determined to be 1-2 arc seconds. The average

pulse spacing, 80.4 arc seconds, was slightly larger than the nominal 79.1 arc seconds, and there
was an unexpected small oscillation of the mean spacing of the pulse positions (these deviations

were subsequently used in the data calibration software to get a better relative vertical regis-

tration of the radiance samples).

Field of View

The instrument was mounted in a protected enclosure purged with dry nitrogen for most of

the optical tests. The FOV shape was measured by scanning the radiometer very slowly across a
hot wire, which had an angular width about 0.1 that of the CO2 and 03 channels. The normalized

results of these scans are shown in Figure 2.49. For reference, one milliradian translates to
-3.6 km at the limb.

The major peaks correspond to the positions of the channels on the FOV mask. The response

of one channel seen at the position of another channel is an unwanted side lobe feature. Other
tests showed that these side lobes were not caused by radiation outside the spectral passband of

the channel, but are believed to be due to internal reflections between the interference filters and

the concave rear side of the final lens; the negative values result from the 180 ° phase difference in

chopping of the narrow and wide channels. These are extremely important for interpreting the
measurements, since when a main lobe is viewing weak radiance at 50 kin, even a small side lobe

viewing the large tropospheric radiance can provide a significant fraction of the received signal.
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Figure 2.49 Normalized instantaneous FOV functions for the six LIMS channels. The response of a channel
at the position of another channel is a side lobe. Toward the left is the downward (Earthward) direction on a
scan (from Gille and Russell, 1984).

To correct for this effect, the shapes of the side lobes were taken from the hot wire scans, but

the magnitudes were determined from scans across a knife-edge target, for which there was a

better signal-to-noise ratio. The corrected spatial response function was Fourier transformed (to

yield the transfer function of the optics and FOV mask) and multiplied by the electronics

frequency response to give the system modulation transfer function. This was used in the spatial

frequency domain to remove side lobe effects and to partially deconvolve the effects of the FOV

on the radiance scan, as outlined in GR and described by Bailey and Gille (1986).

Spectral Response

The relative spectral response c_(v) of the instrument was determined by aligning a mono-
chromator having 1-2 cm -1 resolution on a given detector and measuring the response of the

instrument as the monochromator scanned in frequency. Three in-band measurements of

spectral response were made at two perpendicular orientations of a polarizing screen, and the

resulting values were averaged. Individual runs generally differed by less than 0.01 at a given

frequency. Monochromator output was calibrated against a thermocouple bolometer that was

traceable to a spectrally flat, black standard.
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Wavelength calibration of the monochromator was performed, using a HeNe laser line seen

in high-order reflection from the grating, with CO2 and H20 lines from the small amount of room
air in the protective enclosure, to define the frequency scale, estimated to be known to be <- 0.7
cm -1.

The shapes of the relative spectral responses are shown in Figure 2.50, while the cuton and

cutoff points (5 percent response) are tabulated in Table 2.11.

Table 2.11 Characteristics of LIMS Channels*

Bandpass
5%
Relative Noise

Response Equivalent

Emitting Points Field of View at Limb, km Radiance
Channel Gas cm -1 Vertical Horizontal (W/m2sr)

1 NO2 1560-1630 3.6 28 0.00055
2 H 20 1370-1560 3.6 28 0.0023

3 03 926-1141 1.8 18 0.0037

4 HNO3 844-917 1.8 18 0.0015

5 CO2W 579-755 1.8 18 0.0055

6 CO2N 637-673 1.8 18 0.0014

*From Gille and Russell, 1984
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Figure 2.50 Normalized spectral response curves for LIMS channels (from Gille and Russell, 1984).
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In addition to the in-band scans, slow scans with lower spectral resolution were performed to

look for out-of-spectral-band leaks. The requirement of <0.2 percent of full response in the

out-of-band regions was met for all channels from 2 to 20p, m, beyond which other optical
elements effectively reduced the response to zero.

Finally, the output signal from each channel was measured when every other channel was

irradiated with radiance at its center frequency. Responses were _ 1 percent in all cases, with
many being zero.

Radiometric Calibrations

This test was carried out in the vacuum chamber while the instrument was being exposed to
the range of thermal conditions expected to be encountered in orbit. The radiometer viewed a

honeycomb blackbody target (emissivity __ 0.997) at a series of known, uniform temperatures, so
that the radiation reaching the detectors could be calculated accurately and related to the

instrument output. The two major functions of this test were to measure any nonlinearity in the
radiometer response and to calibrate the IFC so that it could function in orbit as a transfer
standard.

The target blackbody radiances (estimated accuracy __0.6 percent) were then convolved with

the measured spectral response curves to give the relative signal that each channel was expected

to see. Calibrations were performed at three instrument temperatures near 288, 298, and 308 K.

A typical calibration curve at 298 K is shown in Figure 2.51a, which compares the target
observation to the IFC, but which does not allow any departures from linearity to be seen easily.

Figure 2.51b shows the same results, after the least-squares straight-line fit has been removed.

The departures from linearity are consistent, although they are small compared to the re-

quirements, and could be due to problems with the test setup. The radiometer response was

taken to be nearly linear, with a slight quadratic component.

The IFC signal does not lie on the same line as the calibration target. This is primarily because

the IFC has an emissivity _1 and thus reflects some lower temperature radiation from the
surrounding instrument onto the detectors. In addition, there is one more reflection off the

primary mirror during calibration than during atmospheric observations (or target calibration).
By using the calibration results at all three instrument temperatures, the target and mirror
emissivities were determined. These values were used to correct the IFC radiances measured in

orbit. The random noise did not depend on target or instrument temperature.

2.7.4 Instrument Calibration and Performance In Orbit

LIMS instrument activation took place on October 24, 1978, during the first few orbits, when

pyrotechnic valves were fired, allowing the methane and ammonia to begin subliming to space.

The methane temperature, which is very close to the detector temperature, immediately began

to drop from the prelaunch value (-70 K) to its expected operating level near 61 K. The

subsequent methane temperature history is shown in Figure 2.52. As methane depletion

approached, the temperature rose, very slowly at first, then more rapidly. (Small downward
spikes indicate the temperature drop when the instrument was turned off.)
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Figure 2.52 LIMS detector temperature vs. time (expressed in orbit number). One week is approximately
100 orbits.

The radiometer performed according to expectations when it was turned on during the first

day and whenever it was turned on later. A wide-angle scan located the desired part of the limb,
which was tracked by the adaptive scan thereafter.

The operation of the instrument under orbital conditions can be assessed by studying the
results of the inflight calibration sequence. The stability of the IFC temperature over the mission

is discussed in GR; it was constant to _+_1 bit (0.023 °) during an orbit and close to that for the

mission. GR also shows the variation of several instrument temperatures around a typical orbit.

The temperatures of the outer baffles, primary mirror, and chopper plane drop during the

southward (night) part of the orbit, then rise on the northgoing (day) portion. The temperature

variation is slightly larger for the outer baffles and the primary mirror than for the focal plane,

further inside the instrument. Although the variations are small, their effects must be carefully

removed to interpret the small signals in some channels, as well as to take full advantage of the
low noise levels of the radiometer.

The IFC and space view signals vary around an orbit, due to radiation reaching the detectors
from parts of the radiometer where temperatures vary. The IFC and space signals follow each

other closely, although the scale factors between radiance and voltage, which would be constant

if the signals varied by the same amount, do show small (-0.5-0.7 percent) variations around the

orbit. These are shown for the CO2 and 03 channels in Figure 2.53. These variations may be due

to a residual and unexplained temperature dependence of the instrument response that had
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ture) and ozone channels.

been observed earlier in the laboratory, or may indicate the sizes of residual uncertainties in the

inflight calibration.

The long-term stability of the scale factors over the mission is illustrated in Figure 2.54a,b,c,

by the performance of the O3 and CO2 channels, as well as the similarity to the preflight

calibration values. Note that changes in scale factor or offset are not a problem, as they are

measured frequently in space.

The noise level may be determined as it was in the laboratory, by calculating the standard

deviation of the output radiance when the radiometer is viewing the steady signal from space or

the IFC target. These two determinations are quite close, with the IFC giving figures slightly

larger, presumably due to tiny variations in temperatures in the IFC cavity or slight movement of

the LOS across the target.

The noise behavior determined from the orbital data is illustrated in Figure 2.54d by results

from the 03 channel. There is no change, even at the end of the mission. The noise levels shown

in Table 2.11 are based on the more conservative computer calculations.

These figures, taken together, clearly indicate instrument performance that is very close to

design levels, stable, and in agreement with values measured on the ground.

89



INSTRUMENT CALIBRATION AND STABILITY

n-

O
(D

<
<D
O3

lOO0

95O

900

850

8OO

750

7OO

650

600

55O

5OO

450

IIIIIIIIIIIII1

(a) N-C02 SCALE FACTOR

I I I I i I _-L_._J__ L I I 1 I 1

1000 2000 3000

ORBIT NUMBER

170

160

150

140

130

120
1-

110

_, loo
O
o3 90

8O

7O

6O

5O

4O

I I I I 1 I I I I I I I I I

I I I I I t I I l I I I I I

1000 2000

ORBIT NUMBER

;000

240

235

230

225

220

I:E

0 215

u.. 210

205
09

2OO

195

190

185

180 __. I 1 I I I I I t I I

0 1000 2000 3000

ORBIT NUMBER

x

o3

@

i t , (, , , , , i , , _ , i , ,
d) 03 RMS NOISE

26

24

22

2o

18

16

14

12

i
6

0 1000 2000 3000

ORBIT NUMBER
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2.7.5 Instrumental Factors That Could Lead to Measurement Trends

At this point, the instrumental characteristics are discussed in light of possible changes that
could take place and result in long-term changes.

Encoder Spacing

The design of the encoder resulted in four series of encoder pulses. These might shift relative

to one another, but the spacing in each string should be nearly constant at about 320 arc seconds.
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The spacing of the pulses could be roughly assessed on the assumption that the scan rate was

constant, and knowing the time of the pulses to 0.25 ms. This showed no evidence of changes

with time over the life of the experiment.

Electronic Filter Response

The chopper frequency was carefully controlled with a feedback loop. The response is

determined by the electronics. The low frequency response is determined essentially by the

inflight calibration. No evidence of a change in high-frequency response was seen, but it would
have been difficult to detect. In the unlikely event that this or a phase shift occurred, it would

have affected only the spatial components with higher frequencies and not those on which a

long-term mean would have been primarily based.

Field of View

This is determined by a physical mask. It is possible to imagine a mechanical shift of the whole
mask, which would have affected all channels. If it were small, it would not matter; if it were

large, it would be catastrophic, and impossible to overlook. No evidence for a change was seen.

Spectral Response

It is possible to imagine the filters having a sudden failure, such as a partial delamination, but
it seems very unlikely once the filters had been mounted in the detector capsule assembly (which

had been evacuated). Similarly, they are not exposed to contaminant buildup from spacecraft

outgassing. Outgassing from the interior of the detector capsule assembly (DCA) should be

small at those temperatures. In addition, the DCA had been assembled and evacuated for several

months when the spectral response measurements were made. Any residual outgassing in the

DCA would have been included in the measured spectral response values.

Radiometric Calibration

The radiometric response should depend strongly on detector temperature. As Figure 2.51

shows, the detectors were nearly constant in temperature for both long- and short-term

variations. The temperature of the IFC was very constant over the entire life of the mission, as

indicated by both readouts. It is possible that the surface emissivity of the material lining the
cavity of the IFC changed, but the cavity design requires incident radiation to make several

reflections on the average before it reemerges, making the output of the cavity less dependent on

the details of the surface state, and more like that of a blackbody.

Because the same optical train is used for calibration and for making atmospheric measure-

ments, the results should be insensitive to changes in instrument response. However, the

primary enters into the optical train twice on the calibration, and only once on the measurement.

A change in its emissivity would result in some change in response. There is some evidence that
something like this might have occurred, as the size of the variation of the calibration around an

orbit grew larger with time in orbit. However, the variation was from a peak amplitude of 0.3

percent on orbit 100 to 0.7 percent on orbit 2850. The effect of any such change was clearly quite

small, as the regular long-term change of the calibration factor shown in Figure 2.54 indicates. In

addition, because of its location well inside the instrument housing, the primary should be

relatively protected from the general spacecraft outgassing. This possibility cannot be neglected,

however, nor can the effects of outgassing by the instrument baffle material or insulating wraps.
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2.7.6 Conclusions

The evidence suggests that the LIMS, because of its design and inflight calibration, operated

in a very stable manner from shortly after activation on October 24, 1978, until after May 20, 1979,

when its solid cryogen was nearly depleted. The data over this time should not exhibit any
spurious trends of more than a few tenths of a percent.

2.8 OTHER INSTRUMENTS

Four other measurement systems that have not been treated in detail are relevant to the

present discussion. These are briefy described here.

2.8.1 The Backscatter Ultraviolet (BUV) Experiment

The BUV, which flew on Nimbus-4, was the forerunner of the SBUV. It was launched in April
1970, and operated for 7 years. The experiment is described by Heath et al. (1970, 1973, 1975).

Basically it was very similar to the SBUV, but differed in that the input radiance was not chopped

and the diffuser was continuously exposed. In addition, power and tape recorder limitations on
the spacecraft limited the amount of data collected.

Thus, the data from the BUV are poorer and fewer than those from the SBUV. The BUV

diffuser degraded faster than that on SBUV, and the technique to determine degradation
constants on SBUV cannot be applied. Some ingenious attempts have been made to correct the

instrument drift based on ground-based observations of ozone profiles, and the albedo of the

Sahara. All wavelengths show large drifts, but the accuracy and validity are hard to characterize.

It appears that effort is better spent trying to understand the SBUV and its degradation. At that

point, it may be possible to apply this knowledge to the BUV, but it seems somewhat unlikely at
the moment that much additional information on trends can be extracted from BUV.

2.8.2 The SBUV-2 Operational Instrument

The SBUV-2 instrument was designed for flight on the NOAA series of satellites as part of its
operational meteorological satellite program. The first instrument was launched in December

1984, and began making operational measurements in April 1985. The design is based largely on
that of the Nimbus-7 instrument, and thus only the major differences will be discussed in this

section. These are summarized in Table 2.12. A detailed description of the instrument has been
given by Ball Aerospace Systems Division (1981).

The largest difference between the two instruments is that the onboard mercury lamp, which
was used on Nimbus-7 for wavelength calibration only, can be repositioned on SBUV-2 so that
light from the lamp can be either reflected off the diffuser into the instrument, or reflected

directly into the instrument. This enables the reflectivity of the diffuser plate to be monitored. A

second difference has to do with the photomultiplier output. In SBUV, all three ranges of the

electrometer amplifier are taken from the anode; thus, the ratios of the three ranges will be
independent of the gain of the photomultiplier. In the SBUV-2 instrument, the least sensitive

range of the electrometer (corresponding to the higher photon flux measurements) is taken

directly from the cathode of the photomultiplier, while the other two ranges are taken from the

anode. The ratio between the anode and the cathode signals is the gain of the photomultiplier.

The gain change mechanism has been changed on models after the first one launched. A third
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Table 2.12 Comparison of Important Features Between SBUV-2 and SBUV

Features SBUV-2 SBUV

Monochromator mode 4 (discrete, sweep
wavelength, and position)

Control of monochromator

mode

Scene mode

Diffuser position

Mercury lamp position

CCR wavelength

Shortest wavelength of

discrete mode (other 11

wavelengths match)

Wavelength calibration

steps

Electronic calibration

Scanning
discrete mode

sweep mode

Sampling time
discrete

sweep

Diffuser check

Diffuser decontamination

Gain Range

IFOV

Discrete (step scan)

scanning direction

4 step (continuous wavelength,

and cage cam)

FIX System One fixed system

FLEX System (wavelengths can

be changed by command)

4 (Earth, Sun, wavelength
calibrate, diffuser check)

4 (stow, Sun, wavelength
calibration or diffuser

check, & decontamination

2 (stowed and deployed)

379 nm

252 nm (in FIX system)

2 (Earth and Sun)

2 (stow and Sun)

1

343 nm

255.5 nm

12

Every scan in retrace

32 seconds

192 seconds

1.25 seconds

0.1 second

Yes

Yes

2 from PMT anode

1 from PMT cathode

11.3 ° x 11.3 °

From short to long

wavelengths

5

By command

32 seconds

112 seconds

1 second

0.08 second

No

No

3 from PMT

1 from ref. diode

11.3 ° x 11.3 °

From long to short

wavelengths
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z

difference is that the grating drive on SBUV-2 is direct, through a stepping motor on the grating
shaft, and not cam driven as on SBUV.

Although SBUV-2 is an operational instrument, and data collection began 2 years before this

study, no data have been available for evaluation of the stability of its calibration, the de-

gradation of its diffuser, or its simultaneous ozone measurements. In addition, it appears that

many of the lessons learned by SBUV have not been incorporated by NOAA in the processing of
SBUV-2 data. An analysis of the instrument performance of Flight Model 1 during the first 3

months of operation is given in a paper by Frederick et al. (1986), which also contains a fuller
overview of the instrument. As is to be expected, the analysis uncovered several aspects of

instrument behaviour not expected prior to launch. Recommendations for software changes

were made and are now included in the latest engineering algorithm used in the data reduction.

By October 1985, the reflectivity of the diffuser plate, as measured by the onboard mercury

lamp, had apparently decreased by 15 percent, yet the solar flux signal at 273.5 nm showed no

such degradation. An enhanced deployment of the diffuser plate carried out in August 1986

suggests that the diffuser plate had degraded by no more than 2 percent by that time. Thus, it

appeared that the onboard diffuser calibration was in error. The problem was traced to a design
error. The lamp is viewed directly when placed in front of the slit, and, as the lamp is in the form
of a narrow folded discharge, only a portion of the IFOV is filled. On the other hand, the entire

FOV is filled when the lamp is reflected off the diffuser plate. The throughput of the instrument
is not constant across the FOV, and, thus, changes in the characteristics of the discharge could

manifest themselves as apparent changes in the diffuser reflectivity. In a new design, to be used

in all future flight models, the lamp is reflected off a small diffuser before it is used in either
mode.

It is interesting to note that the inferred diffuser plate degradation of less than 2 percent by

August 1986 is considerably smaller than that for the SBUV instrument for the same period of

exposure. This suggests that either the NOAA spacecraft or the SBUV-2 instrument is much
cleaner than Nimbus-7 or SBUV. NOAA's failure to process these data for use in this and other

aspects of the ozone trend studies has made them much more difficult. NOAA is strongly
encouraged to process and understand the SBUV-2 data, which are critical to a continued
measurement of ozone trends.

2.8.3 The Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP)

This occultation experiment utilizes the Tanberg-Hanssen ultraviolet spectrometer polar-

imeter on the SMM spacecraft. Launch occurred in early 1980, but solar pointing was lost in late

1980. In-orbit spacecraft repairs were effected in 1984, and operations have continued since that
time. Details of the instrument and its performance have been described elsewhere (Woodgate et

al., 1980). Briefly, the instrument consists of a Gregorian telescope having a geometric aperture

of 66.4 cm, followed by a 1-m Ebert-Fastie spectrometer and five detectors. The spectrometer is

equipped with a 3600-1ine/mm grating. Rotation of the grating provides wavelength coverage
between 1150A and 1800A in second order and 1750A and 3600A in first order. Areas of the Sun

as small as 3 arc seconds can be studied.

The experiment shares with SAGE the advantages and disadvantages of occultation mea-

surements for long-term trend determinations. Because of the wavelengths used, ozone profiles
are obtained over the altitude range from 50 to 70 km. Appreciable amounts of data are now
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being collected and reduced, but the record with appreciable data is not long, and the profiles

barely extend down to levels where they can be compared to other experiments. It could provide

data for future studies of trends of mesospheric ozone.

Further details of the experiment may be noted. In conducting the ozone experiment, the
entrance slit size is set at I x 180 arc seconds and the exit slit width is 0.01A. Spectral resolution is

0.02A in second order and 0.04A in first order. The wavelength drive is fixed at a single

wavelength. The experiment is conducted by observing the attenuation of a narrow-wavelength

region within the Hartley ozone absorption bands during satellite crossing of the terminator. The

resulting intensity during any time of the occultation is given by the Lambert-Beer law relating
the observed and unattenuated intensities, respectively, at the tangent height h and the height

where no attenuation occurs. The solar intensity is attenuated exponentially by the optical

depth. The optical depth is equal to the product of the ozone absorption cross-section and an

integral giving the total amount of ozone between the Sun and the satellite. The resulting integral

equation is solved for the ozone concentration, making use of the fact that it is a linear Voltera
integral equation of the first kind. The atmosphere is divided into a series of concentric shells at

altitudes defined by the tangent heights corresponding to averages of the measured points. The

integral equation is then represented by a sum over the number of shells so that the equation is

now a matrix equation that can be inverted. Complete details are given in a publication by Aikin

et al. (1982).

Two observing wavelengths were employed. The first was at 2765A near the MgII line. In this

experiment, the spectrometer wavelength range was 1A and the maximum intensity in this

range was detected. This wavelength was then employed for the occultation. The experiment

was performed between November 1984 and March 1985. The remainder of the data from

August 1985 until May 1987 were also collected while performing the experiment at a single

wavelength. Due to an instrument malfunction caused by a broken wavelength drive, there is

some uncertainty in the wavelength utilized in the experiment. This is reflected in the absolute

cross-section to be employed in analyzing the ozone data. The final wavelength position was at
1379.528A in second order. To convert this to first order the wavelength is doubled. In addition,

it is necessary to correct for the offset between the different slits employed for experiments in first
and second orders. This offset amounts to + 4.586A as determined by prelaunch calibration. The

wavelength used for ozone measurements is 2764 with an uncertainty of + 10A. Using the
cross-section data of Molina and Molina (1986), this translates into an uncertainty of + 5.25A

percent and -8.33 percent.

In addition to the error introduced by uncertainty in wavelength, there are other sources of

error due to pointing uncertainty, photon counting noise, and ephemeris error (Aikin et al.,
1982). Pointing introduces +_0.36 km. An ephemeris error in orbital track of 100 to 200 meters will

introduce an altitude uncertainty of 0.14 to 0.28 km.

2.8.4 The ROCOZ-A Ozonesonde

The ROCOZ-A ozonesonde (Barnes and Simeth, 1986) is a four-filter, sequential-sampling,

ultraviolet radiometer. The instrument is propelled aloft by a Super-Loki booster rocket. At

rocket burnout, the instrument and its carrier coast to a nominal apogee of 70 km, where the

payload is ejected for deployment on a parachute. The instrument measures the solar irradiance

over its filter wavelengths as it descends through the atmosphere. Using the Beer-Lambert law,

the amount of ozone in the path between the radiometer and the Sun is calculated from the
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attenuation of solar irradiance as the instrument comes down. In addition, radar from the launch

site measures the height of the payload throughout its descent. This allows calculation of the

fundamental ozone values measured by the radiometer, ozone column amount versus geometric
altitude (Barnes et al., 1986). Ozone number density is the derivative of ozone column amount

with respect to altitude.

Combined with auxiliary atmospheric soundings for pressure and temperature, ROCOZ-A
results can duplicate the fundamental ozone values from all satellite ozone instruments. Details

of the performance characteristics of the auxiliary pressure and temperature instruments are
given in Barnes et al. (1986, 1987). Auxiliary ozone soundings are made with balloonborne

electrochemical concentration cell (ECC) ozonesondes (Komhyr, 1969; Komhyr and Harris,

1971). Analyses of the accuracy and precision of the ECC ozonesonde have been published

(Torres and Bandy, 1978; Barnes et al., 1985). ROCOZ-A flights are also accompanied by total

ozone measurements with the Dobson spectrophotometer. A preliminary intercomparison with

the Dobson, showing no bias at the 1 percent level, has been published (Holland et al., 1985). A

complete Dobson intercomparison, again showing no bias between instruments, has been
submitted for publication as part of a description of ROCOZ-A measurements at northern
midlatitudes.

Measurements of the precision (profile-to-profile repeatability) of ROCOZ-A ozone column

amounts and number densities are in the literature (Holland et al., 1985; Barnes et al., 1986). For

both column amount and density, the precision of the measurements is 3-4 percent (one sigma).

Additionally, the published results of an equatorial ozone measurement campaign (Barnes et al.,
1987) showed very low variability in stratospheric ozone, pressure, and temperature. From the

results of that campaign, the precision of ROCOZ-A ozone-mixing ratios is estimated to be 3-4

percent. The campaign also produced estimates of the precision of temperature measurements

as 1 percent; pressure measurements as 2-2.5 percent; and atmospheric density measurements
as 2-3 percent.

The accuracy estimates for ROCOZ-A ozone measurements come from an internal, un-

published error analysis. The analysis is based on errors in the effective ozone absorption
coefficients used to convert the radiometer readings into ozone profiles, plus the differences

between the ozone values at altitudes where two ROCOZ-A channels give simultaneous

readings (Barnes et al., 1986). A laboratory flight simulator, based on long pathlength photo-
metry (DeMote and Patapoff, 1976; Torres and Bandy, 1978), has been constructed to measure

the accuracy of ROCOZ-A ozone measurements. Publication of a detailed error analysis will

follow the conclusion of experiments with the flight simulator and will complete the primary
characterization of the ROCOZ-A ozonesonde. The accuracy of ROCOZ-A ozone column and

number density measurements is estimated to be 5-7 percent. For ozone-mixing ratios, the
accuracy is estimated as 6-8 percent (Barnes et al., 1986).

Since individual ROCOZ-A radiometers are not recovered after flight, the long-term repeat-
ability of measurements from the instrument is determined by the consistency of the calibrations

of the radiometers with time. To ensure this consistency, the calibration facility for ROCOZ-A

ozonesondes (Holland et al., 1985) incorporates physical standards that are periodically recertio

fled at NBS. The dominant factor in the response of the four ROCOZ-A radiometer channels is

the transmission of the ultraviolet filters. Measurements of the transmission of the optical

components within the instrument are made with a Cary model 17-D double-beam spectro-
photometer.
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The wavelength readings of the spectrophotometer are calibrated in the ultraviolet with a

low-pressure mercury discharge lamp. The linearity of the transmittance measurements from

the Cary is checked with respect to the high-precision reference spectrophotometer at NBS
(Mielenz et al., 1973; Eckerle, 1976). Details of the intercomparison of the spectrophotometers are

given in Holland et al. (1985).

The electronic gains for the instrument channels are adjusted to provide output signals that

are 80 percent of full scale at the top of the atmosphere. Gains are set with an argon maxi-arc, a

somewhat larger version of the previously reported argon mini-arc (Bridges and Ott, 1977). The
NBS certification of the maxi-arc is described in Holland et al. (1985). In addition to periodic

certification at NBS, the maxi-arc is checked in the laboratory to assess the changes in the arc's

output. The NBS certification of the maxi-arc is given as good to within 5 percent. This calibration

is typically duplicated in the laboratory at the 3 percent level (Holland et al., 1985).

2.9 CONCLUSIONS

2.9.1 General Comments

It is difficult to design any instrument or system to measure ozone changes to I percent or less

per year over a period of a few years. This is especially true if one requires that the instrument
operate unattended, a condition that severely constrains the amount of recalibration, testing,

and adjustment that can be carried out, and usually limits the length of the measurement series

to a few years. The difficulties become truly formidable if one further demands that the

instrument operate under the harsh conditions in space.

Among the problems in space are the vacuum that allows contaminant molecules to outgas

from instruments and spacecraft, and the strong solar ultraviolet radiation. When the con-

taminants deposit on optical surfaces and are dissociated by the radiation, the optical charac-

teristics change, and the throughput decreases by unpredictable amounts.

Nonetheless, satellite instruments are indispensable for the determination of trends of ozone

on a global basis. In spite of the difficulties and the relatively early stages of development of most

of the methods and measurement technologies, they have already made enormous con-

tributions to our knowledge of the global distribution of ozone, including its spatial and temporal
variations.

Since 1978, seven instruments have collected large amounts of data that have been reduced

and are clearly relevant to the problem of ozone trends.

However, none of these instruments was specifically designed for trend measurements.

Only two of the experiment descriptions mentioned long-term trends as a goal, but even these
instruments did not take measures to ensure that reliable data for trend detection were obtained.

Some were designed under cost constraints that precluded planning for extended operations.
The operational SBUV-2 instrument was launched for trend measurements in 1984, but data are

only now becoming available in sufficient amounts for careful evaluation. Thus, at this time

reliance must be placed on instruments for which trend detection is an afterthought. In this

situation, it is necessary to make the best use of available data. In most cases, under the impetus

of this study, the data were extensively reanalyzed. All available information has been critically

evaluated to establish the accuracy and long-term stability of these instruments. In some cases,
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the uncertainties in trend-determining capabilities resulting from the present analysis are
different from those reported by the experimenters.

It should be pointed out that, to compare the ability of each instrument to determine trends, it

is necessary to compare derived ozone amounts. Some of the differences in reported trends may
result from effects introduced by the retrieval algorithms.

2.9.2 Instruments and Techniques

This section summarizes some general comments on the measurement characteristics and

problems of the different instruments, and reviews the features of their coverage.

The various techniques for measuring ozone are affected to some extent by changes in
instrument sensitivity. Some techniques rely to first order on relative measurements or ratios

obtained over a short time; from an instrument point of view, these are less susceptible to drift

than those that require an absolute radiance measurement. In either case, greater confidence is

obtained by monitoring the inflight sensitivity of the instrument, generally through measuring

the response of the instrument to a known calibration signal. It is easier to be sure of the output of
an inflight calibration source in the infrared than in the visible, where, in turn, more stable

sources are available than in the UV. In addition, the effects of instrument degradation are
generally more pronounced in the UV than in the visible and infrared.

The SAGE-I and SAGE-II instruments fall into the relative measurement category. They
measure infrared solar radiation during the occultation periods at sunrise and sunset; ozone is

deduced from the relative attenuation of the solar signal over a period of tens of seconds. For
both SAGE instruments, additional information suggests that other instrumental contributions

to errors of trend determination are small. The principal limitation in occultation techniques is
that only two profiles are obtained per orbit, at two latitudes that depend on spacecraft orbit and

astronomical factors, and thus the coverage is sparse compared to other techniques.

A characteristic of these (and other) limb-viewing techniques is that they require very
accurate knowledge of the direction of the line of sight or, equivalently, the tangent height of the
ray path through the atmosphere. For SAGE-I and SAGE-II, these have now been calculated

from the ephemerides of the Sun and the spacecraft. To do this requires accurate spacecraft

tracking and accurate timing data, but these problems appear to have been solved satisfactorily
for the SAGE instruments.

The SME UVS experiment also makes use of a relative measurement technique. The instru-

ment measures the solar UV radiation scattered by Earth's limb as the IFOV scans across it. The

presence of ozone alters the limb radiance profile from that of a purely Rayleigh-scattering
atmosphere, and it is the shape of the radiance profile measured by the short-wavelength
channel during a single limb scan (fraction of a second) that provides information on the absolute

ozone concentration. In this case, measurements are possible anywhere along the orbit on the
daylight hemisphere.

However, independent information on SME pointing directions is not available with suf-

ficient accuracy, forcing the use of the UVS itself to determine those directions. In this case, the

absolute calibration of the long-wavelength channel enters, making it sensitive to first order to

changes in instrument sensitivity and model inaccuracies. This has apparently been several

percent; additional information from the visible spectrometer, with some reasonable assump-
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tions about the drift of its visible diodes, has been used to establish limits on the drift of the long-

wavelength UVS calibration.

Other methods of measuring ozone are directly related to the photometric calibration of the
instrument, and trends in ozone can be known only as well as the trends in the instrument

response. These can be determined best by using an inflight calibration device. Two such

instruments have been included in this study, the SME NIR and LIMS. The NIR measures the

1.27 I_m emission from the lag state of molecular oxygen, a product of ozone photodissociation.

The instrument has an internal calibration lamp that suggests that the NIR has been quite stable

over the 5-year SME mission. Again, the NIR is a limb-viewing instrument, and the pointing

direction had to be determined externally from the UVS observations or from the SME horizon

sensors. However, the signal is relatively insensitive to altitude at the signal maximum, near 0.75

mb. The technique derives values at the stratopause and in the mesosphere along the orbit over
the daylight hemisphere.

LIMS measured the thermal emission of ozone in the 9.6 #,m bands in the middle infrared. It

carried a small blackbody as an inflight calibration device, so that its output can be calculated

from basic physical principles. These have been used with good results in long-lived operational

infrared temperature sounders. All inflight calibration data, as well as external comparisons,

indicate that LIMS was very stable and well characterized over its short mission. The pointing
direction toward the limb was determined from measurements from the LIMS CO2 channels,

and can be done quite accurately. Coverage is possible from any point in the orbit, on the day or

night side.

The SBUV and TOMS instruments almost fall in the category of devices making relative

measurements. They compare the signals of solar radiation backscattered from Earth's atmo-

sphere to solar radiation directly scattered from an instrument diffuser plate. Unfortunately, the

reliability of their ozone determinations is directly related to the knowledge of the scattering

efficiency of the diffuser throughout their missions. While there is information on the de-

gradation of the entire optical train, there is no independent information at wavelengths at

which ozone absorbs to allow the separation of the degradation in the diffuser reflectivity (which

is the only part that affects the determination of the albedo, and thus ozone amounts) from
degradation elsewhere in the optical system. While plausible models of the partitioning can be

made, they cannot be proven to be correct. These are nadir measurements, and so are insensitive

to pointing direction; measurements are possible along the orbit on the daylight hemisphere.

2.9.3 Trend Measurement Capabilities

The findings may be summarized and compared to show the altitude ranges and capabilities
of the data now available. Two related quantities are compared: the minimum detectable ozone

change over the life of the experiment, and the minimum detectable ozone trend, which is

usually the minimum detectable change divided by the life of the experiment.

Measurements of the Vertical Distribution

• SAGE-I and -II--Of the error sources discussed in this chapter, it is apparent that for either

instrument the ozone and Rayleigh cross-sections will remain constant. Taking the root

sum square of the other error sources leads to the conclusion that SAGE-I can discern an
ozone change of 2 percent near 25 km, 4 percent at 20 and 6 percent near 40 km. Similarly,

for SAGE-H, the values are 1.3 percent, 4 percent, and 3 percent, respectively. However,
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because of the difficulties of sampling the same latitudes at the same seasons and under the

same atmospheric conditions, in general it is not possible to detect changes of this size

unambiguously. On the other hand, the instrumental uncertainty in the differences
between SAGE-I and SAGE-II (for situations carefully matched in latitude and season) is

+ 1.5-2 percent between 25 and 45 km; this value is plotted in Figure 2.55. This does not
include the effects of errors resulting from systematic geophysical variations between the

matched pairs of situations that are sampled. At present, these have not been quantified.

To make a rough estimate of the annual rates of ozone decrease that can be determined, it is

necessary to consider the time period over which a change might be sought. Although SAGE-I

operated for 34 months, only 2 complete years of operation are used because of the sampling
problems. A SAGE-II data record of the same length is now available. Dividing the detectable

changes mentioned above by their 2 years of operation indicates that, near 40 km, trends of the

order of 1.5-3 percent per year are detectable (in principle). Again, the interaction of measure-

ment sampling with natural variability requires that these numbers be regarded as no more than

suggestive. It should be pointed out that, as the SAGE-II mission extends to 3 and more years, in

principle it will be able to detect correspondingly smaller trends.

There are roughly 5 years between the midpoints of the SAGE-I and SAGE-II data. Dividing
this into the + 1.5-2 percent minimum detectable total change based on instrumental factors

suggests a minimum detectable trend of -+0.3-0.4 percent per year, which is shown in Figure
2.56.
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Figure 2.55 Uncertainty in total change determined by the various experiments over their lifetimes, as
functions of altitude. For SBUV, the uncertainty is half of the range between models of high and low diffuser
degradation.
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Figure 2.56 Uncertainties of trends determined by various experiments over their lifetimes, as functions of
altitude. For SBUV, the uncertainty is half of the range between models of high and low diffuser degradation.

• SBUV--The major instrumental uncertainty in the SBUV results is due to lack of knowledge

of the way the diffuser plate has degraded with time. There are no measurements from the

instrument that provide this information unambiguously. A family of models was intro-

duced to provide a plausible range of values for the degradation. Based on differences in the

model values after 8 years, the range of ozone content was calculated. One half of this range

is plotted for Umkehr layers 6-10 in Figure 2.55. Thus, in layer 10, the range is 64 percent, or
+_32 percent around the central value. Clearly, the range of ozone content based on these

models is very large at all levels. It must be emphasized that the bounding values are rather

arbitrary, and the actual values could even be outside this range, although this is felt to be

unlikely for reasons mentioned below.

The range of detectable trends is presented in Figure 2.56 in the same way--i.e., in layer 10

the trend range of the models is 4 percent per year, or + 2 percent per year around the midpoint
of the model results.

These models assume that the coefficients relating the degradation to the exposure time and
the elapsed time are constant over the 8 years, which is not necessarily true, adding another

degree of uncertainty.

The change in vertical ozone distribution (in Umkehr layers) from November 1978 to

November 1986 is shown in Figure 2.57 for several different diffuser degradation models. The

curve labeled OPT is based on the data in the archives in 1987. They show a large decrease near 50
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Figure 2.57 Midlatitude vertical distributions of ozone change from 1978-1986 determined from SBUV
data, for several models of diffuser degradation. Curve marked OPT used the model employed in producing
the data archived as of 1987. Curve L was calculated using a model with less diffuser degradation; M t and M2
were derived using models with more diffuser degradation than the SBUV archive model.

km, which was reported by the principal investigator (Heath) to the Congress in 1987. The curve

labeled L shows the same measurements, interpreted by means of a diffuser model with low

degradation, while M1 and M2 indicate results obtained using two models with more de-

gradation than the one used to create the archived data. These illustrate the nonuniqueness of

the results, their strong dependence on the diffuser model, and the position of the archived

values close to the low extreme of this family of models. M1 and M2 indicate small changes, or a
slight increase in ozone near 50 km, with a small decrease near 40 km, similar to that indicated by

the SAGE-I/SAGE-II differences. As noted below, total ozone derived using M1 or M2 agrees

better with Dobson total ozone than do the archived (OPT) data. The wavelengths that provide
information on the vertical distribution at 30-50 km are shorter than those that determine the

total ozone, so the shape of the stratospheric profile depends only on the assumptions in the

diffuser degradation model. The present results give weak support to the decrease at 40 km. It is

possible to construct a reasonable model of the diffuser degradation that causes the vertical

distribution of the SBUV rate of ozone decrease to agree with the SAGE-I/SAGE-II rate, and the
SBUV change in total ozone to agree with the change in Dobson total ozone, but this provides no

additional independent information.

These results indicate that the uncertainties in the diffuser degradation model, and the

resulting uncertainties in ozone column amounts and vertical distributions, are much greater

than has been stated previously. The weight of evidence also suggests that the diffuser

degradation model used in producing the archived data has underestimated the diffuser
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degradation, and thereby systematically underestimated the vertical ozone distribution, re-
sulting in a large, but false, decrease.

SME-UVS---The arguments presented in the report indicate that the SME-UVS instrument

can determine an ozone trend at 0.75 mb to +--3.5 percent per year, or detect a ---17.5 percent

change over the 5-year lifetime of the SME spacecraft.

SME-NIR--From the considerations in the report, the trends at 0.75 mb apparently can be
determined to be ---0.7 percent per year, or ---3.5 percent over the SME lifetime. However,

this technique is very different from those that have been used before, and relies on an

involved set of photochemical reactions. Until the underlying chemistry is understood

more completely, the possibility exists that additional reactions are involved, or that there

are unrecognized sensitivities to other factors. Thus, the instrumental error bars shown

here may be unrepresentative of the true variation.

LIMS--Because of its short lifetime, no attempt has been made to evaluate the LIMS

capability to measure long-term trends. In this study, LIMS has served as a useful check and

source of comparisons with measurements by other techniques.

As infrared limb scanning uses a stable onboard blackbody for calibration, this technique
should be a good candidate for long-term trend measurements. The major difficulty is the

requirement that detectors with sufficient sensitivity operate over a period of a few years. This

will probably require cooling the detectors well below spacecraft ambient temperatures.

Comparison of Trend Detection Capabilities for the Vertical Distribution

Figure 2.55 shows that, at present, the SAGE-I/SAGE-II difference sets the most sensitive
limits on the detection of a change in the stratosphere, followed by the SME-NIR (in the lower

mesosphere). Similarly, Figure 2.56 compares trend detection capabilities. The SAGE-I/SAGE-II

difference is capable of detecting trends of less than 0.5 percent per year in the stratosphere
above 25 km. As noted above, as the SAGE-II record becomes longer, it should be able to detect

smaller trends, but this must be evaluated in light of its sparse coverage and of the problems of

obtaining comparisons under similar seasonal, latitudinal, and atmospheric conditions.

In the future, if the SBUV-2 results can be proven to be highly accurate, it should be possible

to use them with the SBUV measurements to determine long-term changes to better than 1

percent per year. Determining the time history of the changes will be a more difficult task.

Total Ozone Determinations from SBUV and TOMS

Because SBUV and TOMS employ the same wavelengths and share the same diffuser plate,

they show the same trends and have the same sensitivity to diffuser degradation. The uncer-

tainties in total ozone were calculated, using a range of diffuser degradation models for

wavelengths of 312.5 nm and longer. This leads to a range of about 4 percent in total ozone

change over 8 years, and a consequent range of total ozone trends of 0.3--0.5 percent per year.

In this case, the diffuser model used to obtain the archived data results in ozone amounts near

the minimum of the range. The true total ozone values could be 4 percent higher than those

suggested by the archived TOMS data, and the downward trend could be smaller than that of the
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archived data by _ 0.4 percent per year. Diffuser models M1 and M2 thus give total ozone

changes that are in good agreement with the changes observed by the Dobson network.

A Final Observation on SBUV and TOMS Results

The evidence indicates that the uncertainties in the total ozone changes and in the changes in
the vertical distributions are considerably larger than has been stated previously. The pre-

ponderance of evidence suggests that the model adopted in producing the archived data has

underestimated the diffuser degradation, and thereby underestimated total column ozone and

ozone profile amounts in recent years. Within the uncertainties, the total amounts could have

changed by the amounts indicated by the Dobson network, while the vertical profiles could have

remained nearly unchanged, or had a small decrease near 40 km with a small increase near
50 kin.

2.9.4 Ongoing Work

Many studies were carried out as part of this investigation. Two in particular that were not

completed at the time of this writing should be brought to completion:

• A comparison of SBUV and SBUV-2 results during the period of overlap.

• A comparison of the SBUV, SME, and other solar measurements.

2.9.5 Future Satellite Measurements of Ozone Trends

The analyses discussed here have shown that the measurement of long-term ozone trends

from satellites is a difficult but viable task. Results to date, with data that, for the most part, were

not taken for this purpose, have proven to be very instructive, and such a measurement program

should continue. The measurement system should be based on a careful scientific analysis of the
capabilities of the techniques with a view to optimizing them. Of necessity, this will need to be

tightly linked with studies on the best methods of implementation to define the instruments

employed by such a system. The methods for demonstrating the stability of the systems results

will also need to be addressed. This study suggests that a measurement program should include
the following features:

The instruments should be designed for long life and stable operation. All instruments

should include provisions for monitoring their operations and characteristics in space,
preferably by including a stable inflight calibration source.

Attempts should be made to reduce the amount of contamination to which the instruments

are subject. This applies most strongly to instruments making measurements in the UV, but

is relevant for all instruments. It should begin with concerted efforts to reduce the amount

of outgassing from the spacecraft. Additional attention should be paid to the cleanliness of

the individual instruments. Testing should not be carried out in vacuum systems that are oil

pumped, since this often results in traces of the pump oil being adsorbed by the spacecraft
materials. As noted above, degradation effects are most noticeable on surfaces that are

exposed to solar UV radiation. Such surfaces and the amount of exposure should be
minimized. Strategies of heating such surfaces before solar exposure, to drive off adsorbed

contaminants before they are fixed on the surface, should also be investigated.
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Ideally, the program should consist of more than one satellite instrument, employing

different experimental techniques. If a sequence of instruments is used over time, then

adequate overlap between instruments must be made, such that differences in trends (or
lack thereof) can be firmly established. Thus, for the present SBUV-2 series of instruments

on the NOAA operational spacecraft, the ideal arrangement would be to collect data from
each instrument for its life, without being governed by the operational need for the

instrument, which would have an instrument turned off as soon as its successor is put in

operation. While the SBUV-2 system is in operation, the shuttle SBUV is an extremely

desirable component of the overall program.

The system should also consist of a continuous long-term set of ground-based measure-

ments, carefully maintained at a high level of accuracy. Such systems are the proposed
Global Network for the Early Detection of Stratospheric Change, for the vertical dis-
tribution of ozone, and the Dobson network for total ozone. It is important for the stations

to be accurate and very stable. Only a limited number of such stations is needed, but they

should be capable of obtaining data on a nearly daily basis, preferably under all weather
conditions.
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3.0 INTRODUCTION

All practical methods of measuring atmospheric ozone that are useful for monitoring trends
are indirect in some way. The quantity that an instrument measures directly is related, in some

more or less complicated way, to the ozone distribution. Deriving the ozone distribution from
the measurement involves the numerical solution of the equations expressing this relationship

by a process generally known as "retrieval." The error analysis of the retrieval algorithm is an

important part of evaluating the performance of the overall observing system.

The total ozone measurements made by the Dobson spectrophotometer and the Total Ozone

Mapping Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) instruments on Nim-
bus-7 are relatively simply related to the total ozone, so that the retrieval error analysis is

straightforward. However, the profile measurements made by instruments such as the SBUV are

very indirect. In some cases, the retrieval problem is "ill-posed" and needs a great deal of care.

We note that because the measurements are indirect, data from different observing systems

will have different characteristics; this must be taken into account when comparing data from

different sources. Consequently, the primary aim of this chapter is to characterise the algorithms

that have been used for production processing by the major suppliers of ozone data to show

quantitatively:

• How the retrieved profile is related to the actual profile. This characterises the altitude
range and vertical resolution of the data.

• The nature of systematic errors in the retrieved profiles, including their vertical structure
and relation to uncertain instrumental parameters.

• How trends in the real ozone are reflected in trends in the retrieved ozone profile.

• How trends in other quantities (both instrumental and atmospheric) might appear as
trends in the ozone profile.

Error analyses for the ozone data that we have considered have, in general, been published in

the open literature. Unfortunately, they have not been performed in a uniform and comparable
way. We therefore decided to define a uniform error analysis and to apply it to all the data

sources. At the request of the Ozone Trends Panel, these error analyses have been carried out by

the experimenters.

Because it may be possible to largely eliminate random error in the long-term averages

required for trends, retrieval methods appropriate to trend estimation are not necessarily the

same as those appropriate to estimation of single profiles. However, the retrieval methods used

for the data now available are designed for single profiles. It has become clear in the course of this
study that data from some sources would be improved by reprocessing with improved methods;

some data suppliers (e.g., Umkehr) are planning to do this. As our primary task is not to discuss

the efficacy of the inverse methods used, but to characterise the ozone trend information

currently available, we only consider in detail the algorithms that have been used to produce

these data. However, we will make suggestions about retrieval methods suitable for trend
estimation.
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3.1 PROFILE RETRIEVAL CONCEPTS

The relationship between the ozone distribution and the quantity measured by a remote-

sounding instrument is usually complicated and difficult to solve explicitly. The experimenters

providing ozone data have used a wide range of retrieval methods to deal with the problem. In

this section, we survey the types of methods used, as a background for our error analysis.

Any retrieval method uses some mathematical or numerical model of the relationship
between the unknown profile and the quantity measured. We denote the quantities measured

by an instrument in relation to any one profile by a vector y, and the unknown ozone profile by a
vector x, which could be, for example, the mixing ratio at a set of altitudes. We describe the

measurement algebraically or algorithmically by a forward model or measurement model, F(x). The

retrieval method will adjust the retrieved profile in some way so that the computed measure-
ment corresponding to the retrieval agrees to some extent with the actual measurement. We
describe this process by an inversemodeI, I(y). Three classes of retrieval method have been used to

produce the data studied here: onion peeling, relaxation, and linearisation with constraints.

The problem is fundamentally ill posed because the profile will always have structure on a

scale finer than that on which it is possible to measure. Thus, all methods must use some explicit
or implicit constraint on the solution. This usually takes the form of a profile representation that
has finite vertical resolution.

A limb sounder measures a quantity that depends on the ozone profile only above the

tangent height. If the profile is determined sequentially, starting at the top, then to find the
ozone amount in the next layer down, it is only necessary to find the amount that matches the

measured radiance (or transmittance, etc.) from that layer. Thus, onion peeling needs only to be
able to solve a sequence of one-dimensional problems.

Relaxation methods solve the problem at all levels simultaneously by adjusting the profile
according to a relaxation equation to improve the match between the measurement and the

quantity computed by the forward model. The version of the Chahine method developed by
Twomey et al. (1977) uses the following relaxation equation:

+I -- [ 1 + & (xv ( yy
Fj(x') 1)] (1)

where n is an iteration index, i is a height index,/(is the weighting function (defined by Equation

2 below) normalised so that its maximum value is unity, andyj _ is the measurement in channelj.

The iteration is carried out for each channel in turn (i.e., for each j), and then repeated until

convergence. The iteration modifies the profile in the region where the weighting function is
nonzero by an amount that depends on the ratio of the measurement to the forward model.

If the forward model is linearised about some standard profile x0,

y = F(xo) + Kotx - Xo) + O(x - Xo)2 (2)

where K0 is the Fr6chet derivative 3F(x)/dx evaluated at x0, then a Newtonian iteration can be

used. Unfortunately, this relationship is usually ill posed; i.e., x has more elements than y, so

further constraints are required on x. If we use a quadratic form constraint, and jointly minimise

(X- Xo)TSx(X- Xo) and (yl(x)- ym)TSy(Yl(X)- Ym), where the matrices S express the nature of
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the constant, y_ is the linearised forward model, and Ym is the measurement, then the iteration is
of the form:

Xn + 1 : X0 q- Sx KT (K.Sx KT + Sy)- i [Ym - F(xn) - Kn(x0 - x.)] (3)

Both the Twomey (1963) "minimum information" method and the optimal estimation

approach reviewed by Rodgers (1976) are of this kind, with different interpretations for the
constraint matrices.

3.2. ERROR ANALYSIS CONCEPTS

Many sources contribute to errors in retrieved ozone data sets. Those that lead to
constant offsets or purely random errors are of minor importance when studying trends, as

random errors will average out in the long run, and constant offsets make no difference to

the trend. There are sources of error that distort the profile in some way, for example, by

smoothing it. These are important because the derived trend profile will be similarly

distorted. The most important sources of error are those that have trends themselves, which

might appear as false trends in ozone.

To understand the nature of the retrieved data, we have carried out a formal error

analysis of each observing system, including the instrument and the retrieval method. This

will tell us how the retrieved data are related to the true profile and how the various sources

of uncertainty affect the result. The error analysis must be general enough to apply to a wide

variety of systems and to deal with various kinds of systematic errors. We generalise the

forward and inverse model definitions to include some other parameters. The forward
model becomes:

y = F(x,b) + Ey (4)

The vector b represents any other parameters that the measurement might depend on, such

as instrumental calibration or atmospheric temperature, and that may affect the derived

ozone profile if not perfectly known. It may also be used to describe forward model

deficiencies. The vector ey is the direct measurement error in y. Note that, in principle, the
measurement vector is in units of volts or telemetry counts, and not in scientific units.

Calibration and retrieval are usually treated as separate processes operationally, but the

boundary between them is often ill defined; they must be considered together for the error

analysis.

The retrieved profile :k is related to the measurement in a way described by a slightly
generalised inverse model:

:¢ = I(y,b,e ) (5)

where c represents any quantities that are used in the inverse model and subject to error or

variability, but that do not appear in the forward model. The primary example is an a priori
profile and its covariance, or an instrumental noise covariance assumed for the retrieval.

We can now formally relate the retrieved profile to the true profile. To carry out an error

analysis with respect to the uncertain quantities b, c, and y,

= l(F(x,b) + ey,b + e_,c + ec)

= I(F(x,b) + ey,b,e) (6)
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where 1_and _ are our best estimates of these parameters, but include errors Eband ec. This can be

expressed in the form :_ = T(x, b, e)+ error terms, where T is a transfer function relating x to :¢.

Characterising the transfer function is one way of understanding how the retrieved profile is
related to the true profile.

For the error analysis, we linearise about some ensemble mean _ and our best estimate of the

forward model parameters, I_ and 6. We cannot use the true values of the model parameters, as
they are not known.

aT aT ai 3I

= T('Z,f),4) + _-(x-_) +-_-_-Eb +--_-ec +--_--y Ey (7)

= T(_,fa,_) + A(x-_) + Abeb + A_% + D_,ey

thus defining the matrices A, At,, Ac, and Dy. The first term is the transfer function operating on
the ensemble mean _I. Ideally, we might expect this to yield _, i.e.,

T(_,b,_) =_ (8)

but this is not necessarily true for the general retrieval algorithm. Any difference contributes to
systematic error in the observing system.

The term A(x-_) is equivalent to the integral in a relation of the form

2(z) =_(z) + fA(z,z')[x(z') - _(z')]dz' + other terms (9)

Thus, the rows of matrix A show how the observing system smooths the profile. Ideally, A
would be the unit matrix I, but in practise it is not, nor is it symmetric. We call the rows the

averaging kernels. In regions where the retrieval is valid, they will be peaked functions centered on

the appropriate altitude, having approximately unit area. They indicate the altitude range over

which the observing system is sensitive to changes in the actual profile and give an indication of

its vertical resolution. As an alternative to thinking of the averaging kernels' smoothing effect on

the profile, we can consider the error in the solution contributed by structure on the vertical
profile that is orthogonal to the averaging kernels. This is called the null space error. However, its

size can be estimated only if the statistical behaviour of the true profile is known.

The columns of A differ from the rows and show the response of the retrieval to a 5-function
perturbation in x. Insofar as the linear expansion for A is valid, trends derived from retrieved

data will have the same vertical resolution and range of validity as individual profiles.

Sensitivity of the observing system to forward model parameter errors is expressed by Ab,
and contributes to both systematic and random error, according to the nature of the errors in b.

Sensitivity to inverse model parameters is likewise given by Ac. Dy expresses the sensitivity to
instrumental noise. For the analysis of trends, the effect of the instrumental noise terms and the

random components of the error in b is reduced by averaging. The important terms are the

systematic errors in b and e, especially those components that may have unrecognised, or
unmodeled, trends themselves.

A full description of this approach to profile retrieval error analysis is being prepared for
publication (Rodgers, 1988).
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3.3 RETRIEVAL ANALYSIS FOR INDIVIDUAL INSTRUMENTS

In the following sections, we discuss the characteristics of the data supplied by instruments

with a relatively long-term data record. These include SBUV, TOMS, Dobson, Stratospheric

Aerosol and Gas Experiment (SAGE) -I and -II, the Solar Mesospheric Explorer (SME) Ultra-

violet Spectrometer (UVS), and Near Infrared Spectrometer (NIRS). The Limb Infrared Monitor

of the Stratosphere (LIMS) has been included as a source of validation data. The TIROS-N

Operational Vertical Sounder (TOVS) has not been included, as the retrieval is by regression

against Dobson measurements and it will have nothing of its own to say about trends.

We present a brief description of the forward and inverse models for each data source, and

graphically display the averaging kernels and the major components of the systematic error.
These diagnostics are used to assess the effect of the retrieval on the estimation of trends and the

aliassing of trends in other quantities into apparent trends in ozone. Errors are lo-, unless
otherwise stated. For detailed descriptions of the instruments, see Chapter 2 of this report.

3.3.1 TOMS and SBUV Total Ozone

The TOMS instrument on Nimbus-7 consists of a monochromator whose narrow (3 ° x 3°)

field of view (FOV) is scanned through the subsatellite point in a plane perpendicular to the

orbital plane. Backscattered radiation is sampled at the six wavelengths--313, 318, 331,340, 360,
and 380 nm--sequentially in 3-degree steps in a +51 degree cross-scan from the nadir. This

scanning creates a contiguous mapping of the total ozone, since the scans of consecutive orbits

overlap.

All TOMS data currently available from the archives (National Space Science Data Center--

NSSDC) have been reprocessed using a new algorithm (Version 5) that uses a revised set of

ozone absorption cross-section and instrument calibration parameters. The reprocessing started

in December 1986 and was completed in July 1987.

The SBUV instrument (see Section 3.3.3) on Nimbus-7 measures total ozone by the same

method, with a larger field of view (11.3 degrees square), and without the cross-track scanning.

The wavelengths used for total ozone are 340, 331, 318, and 313 nm, a subset of the TOMS

wavelengths. Both instruments are calibrated by viewing solar radiation reflected by the same

diffuser plate, but with slightly different geometries.

3.3.1.1 Forward Model

The forward model used for analysis of the TOMS and SBUV data expresses the diffuse

reflection of solar radiation by a multiple-scattering/absorbing atmosphere, bounded at the

bottom by a diffusely reflecting surface. The physical basis of this forward model has been

discussed by Dave and Mateer (1967) and reviewed subsequently by Klenk et al. (1982). The

observational approach uses measurements at wavelengths near the long-wavelength end of the

Hartley-Huggins O3 absorption band. The wavelengths are chosen so that most of the radiance

reaching the satellite instrument has passed through the ozone layer and has been backscattered

from within the troposphere.

The absorption optical thicknesses for typical amounts of stratospheric ozone at the wave-

lengths used for ozone determination range from 0.05 to 0.5. The Rayleigh-scattering optical
thicknesses for the entire atmosphere at these same wavelengths are around unity; about 90
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percent of the scattering occurs in the troposphere. Thus, the backscattered radiance at the

satellite depends on (1) the attenuation of the direct solar beam on its slant path through the

ozone layer, (2) the reflecting power of the troposphere (molecular and aerosol scattering and

surface and cloud reflections), and (3) the attenuation of the diffusely reflected radiation as it

passes upward through the ozone layer.

If/z0 is the cosine of the Sun's zenith angle for the solar ray incident on Earth's surface at the

view point, and/z is the cosine of the zenith angle of the line of sight to the satellite at the view
point, then the total attenuation path ofbackscattered photons through the ozone layer, from (1)

and (3), is approximately proportional to 1//._ + 1/p,. This proportionality is modified by the

effects of the sphericity of Earth (important when p, or/-to are small) and by the presence of ozone

in the tropospheric scattering layer.

An important aspect of the evaluation method is the treatment of cloud and surface re-

flections and backscattering by tropospheric aerosols. It is assumed that the average of these
effects, over the instantaneous field of view, is that the atmosphere acts as if there were a

Lambertian surface with equivalent albedo or reflectivity R. For a given wavelength, the forward

model may then be written:

R

I(fl,p.,l_o,R) = I(fZ,tz,p_o,0) + T(f_#,_o) [1 - RS(fD] (10)

where f_ is the total ozone, I(f_, #,/-t0,R) is the measured backscattered radiance, I(ll, #,/z0,0) is

the Rayleigh backscattered radiance from the atmosphere alone, T(fl, #, #o) is the direct plus

diffuse radiance reaching the surface times the transmittance of the atmosphere for radiation
reflected isotropically by the surface, and S(fI) is the albedo of the atmosphere seen from below

by the reflected surface radiance.

Precomputed tables of I, T, and S are used to evaluate the terms of the forward model. These

data cover the full range of possible solar zenith angles and view angles. All orders of molecular

scattering are accounted for by successive iteration of the auxiliary equation (Dave, 1964) in a

pseudospherical atmosphere (DeLuisi and Mateer, 1971). The computations were carried out for
17 standard O3 profiles, including 3 for a latitude of 15 °, 7 for 45 °, and 7 for 75 °. Two sets of tables

were computed: one for a surface pressure of 1.0 atm, the other for 0.4 atm. The ozone absorption

coefficients are based on the measurements of Bass and Paur (1985). The effect of atmospheric
temperature on ozone cross-sections is accounted for by using the three standard temperature

profiles, one for each latitude. The computation of the band-averaged coefficients is described by
Klenk (1980).

3.3.1.2 The Inverse Method

The surface albedo R is determined from the radiance measurements at 360 nm and 380 nm

for TOMS and at 340 nm for SBUV, using Equation 10. All of these are outside the ozone

absorption band, for which the f_ dependence drops out. This determination is dependent on

tabulated values for I(/z, it0,0), T(tt, #0), and S. It is assumed that R is independent of wavelength.

Total ozone is inferred from the relative logarithmic attenuation N for absorbing wavelength

pairs (M, X2). The quantity N is related to the observations through the equation

N(Xl, X2) -- 100 x [loglo(I/Fo)2 - loglo(I/Fo)l] (11)
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where F0 is the solar irradiance and I the measured backscattered Earth radiance, each at the

wavelengths indicated. In the ideal case of a nonscattering atmosphere bounded by a Lambert-

ian reflector, this quantity would be proportional to the total ozone in the optical path. When

scattering is present, the relationship is nonlinear, and depends on the angles, the surface

reflectivity, and the vertical distribution of ozone.

For TOMS, there are 12 separate estimates of total ozone: 4 from each of the 3 pairs--the

A-pair (313/331), the B-pair (318/331), and the C-pair (331/340); for each pair from the two

pressure tables (1.0 and 0.4 atm); and for each pressure from the two sets of standard ozone

profiles from the latitudes nearest to the measurement latitude. The total ozone is linearly

interpolated in latitude, except that between 0° and 15 ° latitude, only the 15 ° profile set is used,

and polewards of 75 °, the 75 ° profile set is used.

To combine the ozone values from the two pressures, an estimate is made of the effective

surface pressure using the following procedure:

= wpe + (1- w)pc (12)

where pt is the terrain pressure, Pc is the estimated cloud-top pressure, and w varies from 0 to 1

based on surface reflectivity. It is unity forR <_0.2, zero forR _> 0.6, and linearly interpolated for

intermediate reflectivity. The cloud-top pressure is estimated in two ways: based on an em-

pirically derived relationship that gives the cloud-top height as a function of latitude, and on an
estimate based on the collocated infrared measurements from the THIR (temperature humidity

infrared) sensor on Nimbus-7. The relationships used are "tuned" so that, on average, both

estimates give the same total ozone amount.

The above rule is modified when snow or ice is known to be present (based on daily snow/ice

maps from the U.S. Air Force). In such cases, it is assumed that there is only a 50 percent

probability that clouds are present, despite the higher reflectivity, and the surface pressure (p)

derived above is averaged with the terrain pressure.

Finally, the three estimates of total ozone from the three pairs are combined using a

weighting scheme that takes into account the varying sensitivities of the three pairs (with total
ozone, solar zenith angle, view angle, and reflectivity) to total ozone amount and to errors in the

retrieval. The combined estimate is reported as "best ozone."

3.3.1.3 Forward Model Assessment

The forward model scattering atmosphere is assumed to be Rayleigh; the lower boundary

reflecting surface is assumed to be opaque and Lambertian. Simulation results (Dave, 1978) show
that this assumption works well for aerosol optical thickness up to 1.0 except in unusual

scattering situations, such as when two layers of thick clouds, separated by several kilometers of

absorbing atmosphere, may be present.

The effects of the sphericity of Earth are accounted for only in the direct-beam and first-order

scattering, but not in multiple scattering. The error in total ozone caused by this uncertainty is

likely to be small.

Absorption by volcanic SO2 has not been included in the forward model and the retrieval.
This can clearly be seen as a perturbation in the retrieved total ozone for a short period after major

eruptions, but it is quickly converted to H2SO4, and is unimportant for long-term studies.
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3.3.1.4 Inverse Model Assessment

The primary source of error in deriving total ozone from the TOMS and SBUV measurements

is the presence of tropospheric ozone. In the presence of thick clouds, the instruments obviously

cannot measure the ozone column below the cloud layer. In effect, the algorithm adds an amount

based on climatology. For a typical dark reflecting surface, even in the absence of clouds,

variations in the total ozone column caused by changes in the ozone near the surface have

relatively little effect on the measurement, because some backscattering takes place above this
ozone. Therefore, effects of such variations will be underestimated in the TOMS- and SBUV-

derived total ozone. A detailed discussion of this effect is given by Klenk et al. (1982).

Another possible source of error is the assumption that the surface reflectivity is wavelength
independent. The TOMS instrument was designed with three reflectivity wavelengths (380, 360,

and 340 nm) that can be used to study any possible wavelength dependence of the reflectivity.

Early studies indicated no systematic wavelength dependence over different surfaces; therefore,

the algorithm was designed to use a simple average of 380 nm and 360 nm reflectivities, whilst in

the case of the SBUV, only 340 nm is used.

3.3.1.5 Error Analysis

Sensitivity to Diffuser Plate Reflectivity

The wavelength dependence of the sensitivity of retrieved total ozone to diffuser plate
reflectivity D_ is given in Table 3.1 for both TOMS and SBUV. On the basis of the discussion of

diffuser plates in Chapter 2, we have carried out several tests (a-e, below) of the sensitivity of the

retrieved total ozone to possible variations of diffuser plate reflectivity.

Table 3.1 Sensitivity of Retrieved Total Ozone to Diffuser Plate Reflectivity, d In £/d In D^, for
TOMS at Two View Angles, 8, and for SBUV. The Reference Atmosphere Contains 280

Dobson Units (DU) of Ozone, Surface Reflectivity is 0.3, and the Solar Zenith Angle is
45 ° .

;_ (nm) TOMS, 0=0 ° TOMS, 0=51 ° SBUV

313 0.71 O.53

318 0.71 0.62

331 - 1.41 - 0.85

340 0.0 - O.34

360 0.13 0.11

380 0.12 0.10

0.58

0.72

-1.3
0.24

(a)

(b)
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A random error of 1 percent in Dx, uncorrelated between wavelengths, but constant in time.
This gives a contribution to the formal random error in the total ozone, but should have no

effect on the measured trend. The root mean square (rms) caused by this error source is
given in row (a) of Table 3.2.

A constant error of I percent in Dx at all wavelengths. Thus, a drift of I percent per year in
the error in Dx would lead to an annual drift in total ozone given by row (b) of Table 3.2.
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(c)

(d)

(e)

A random error of 2 percent in r(k), the formal uncertainty quoted in Chapter 2. This is

assumed to be uncorrelated between wavelengths, but constant in time. It leads to a scale

error proportional to exposure time, whose value is random with an rms value given by row
(c) of Table 3.2 at E = 761 hours (the end of the data set, after 8 years of measurements).

A constant error of 5 percent in r(X). Five percent is roughly the scatter of the values of r

given in Chapter 2, Figure 2.10. Row (d) of Table 3.2 gives the percentage error in total

ozone from this source after an exposure time E = 761 hours.

We have also considered the alternate diffuser plate models M1, M2, and L of Chapter 2.

The change that these make to the retrieved total ozone relative to the model assumed by

the OPT at an exposure time of 761 hours is given in Table 3.2.

Table 3.2 Sensitivity of Retrieved Total Ozone to Diffuser Plate Model Error Scenarios. The Basic
State Is as for Table 3.1. The Details of the Scenarios Are Discussed in the Text.

X (nm) TOMS, 0=0 ° TOMS, 0= 51 ° SBUV

(a) Da _+1% 1.7 1.2 1.6

(b) Da + 1% 0.3 0.2 0.2

(c) r(_.) _+2% 0.8 0.6 0.7

(d) r(M +5% 0.4 0.3 0.4

M1 after 8 yrs 4.5 3.3 4.8

M2 after 8 yrs 2.9 2.0 3.1
L after 8 yrs -0.6 -0.8 -0.8

Averaging Kernel

The "total ozone" measured by TOMS and SBUV is not the true total. It can be described as a

weighted mean of the ozone density profile, plus an a priori contribution to allow for the
tropospheric ozone not seen. The ,weighting function is close to unity for layers above the

scattering layer, and smaller for layers below. For the tropospheric layers, the value of the weight

can vary from zero (for thick clouds with tops near the tropopause) to near unity (for cloud-free

scenes with a brightly reflecting surface). Typical weights for SBUV measurements with a solar

zenith angle of 45 ° are <15 mb: 1.06; 15-30mb: 1.00; 30--100mb: 0.97; surface-100mb (cloud free):

0.7; cloud top-100mb (opaque cloud): 1.1-1.3; cloud top-ground: 0.0. These weights are appro-
priate for solar zenith angles up to about 70°, but will decrease considerably at low levels closer to
the terminator.

A nominal value of 0.6 may be used for determining the error in the long-term trend due to

changes in the tropospheric ozone.

Sensitivity to Atmospheric Temperature

The sensitivity of total ozone to atmospheric temperature is relatively small. At a nominal

ozone density weighted atmospheric temperature of -46°C, the sensitivities are A-pair: 0.16

%/K; B-pair: 0.14 %/K; C-pair: 0.2 %/K. Note that the C-pair is used only near the terminator. The

temperature dependence becomes even smaller at temperatures below - 65°C. Thus, a tempera-

ture change of around 6-7K would be needed to produce a fictitious ozone change of I percent.
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3.3.1.6 Trend Estimation Assessment

The primary source of error in TOMS and SBUV total ozone is the relative drift of the

calibration of the diffuser plate reflectivity over the 20 nm intervals between the wavelength

pairs. The range of possible models of the time change of the reflectivity leads to a drift in TOMS

and SBUV total ozone of between - 4.8 percent and + 0.8 percent over the period 1978 to 1986.
This could account for a large fraction of the drift relative to the Dobson network, discussed in

Chapter 4.

The ozonesonde data indicate that tropospheric ozone may be increasing by about 1 percent

per year (Logan, 1985; Tiao et al., I986). The contribution to the column trend would be around

0.1 percent per year; about half of this would not be seen by SBUV and TOMS because these

instruments are not sensitive to lower tropospheric ozone, but all of it would be seen by the
Dobson instrument.

Although 81A years' worth of TOMS ozone data are currently available, the TOMS instru-

ment has had problems with its chopper electronics since April 1984. The best current estimates

(Fleig et al., 1986) are that the error in total ozone data due to this problem has both positive and

negative signs, with no more than 10 matm-cm error in any single measurement, no more than 5

matm-cm in the zonal mean of any given day, and no significant effect in deriving long-term
trends.

3.3.2 Dobson Ozone Spectrophotometer: Total Ozone

The basic references for the Dobson Ozone Spectrophotometer are the Observers" Handbook

(Dobson, 1957a, hereinafter BR1) and the Adjustment and Calibration Manual (Dobson, 1957b,

hereinafter BR2). The instrument is used to measure the relative logarithmic attenuation of two
wavelengths in the Hartley-Huggins ozone bands, one strongly and one weakly absorbed by

ozone. These measurements may be made in either the direct sun (DS) or zenith sky (clear blue,

ZB; or cloudy, ZC) modes of observation.

In some countries, the measurements are processed centrally and in others, at the individual

instrument sites, but in all cases according to the process described in BR1.

3.3.2.1 Forward Model

For DS observations, the forward model for the relative logarithmic attenuation for a

wavelength pair may be derived trivially from Beer's Law as

N = loglo(I/Fo) - lOglo(I'/F'o)

= (a - a'JIA2 + (fl - fl')mp + (8 - 3')p.o + Co (13)

where L I' are the solar irradiances for the short and long wavelengths, respectively,
F0, F'0 are the extraterrestrial solar irradiances,

a,a' are the decadic ozone absorption coefficients, atm-cm -_,

/, is the relative slant path of the Sun's rays through the ozone layer, -'=-"/*ofor small
solar zenith angles,

is the relative slant path of the Sun's rays through the aerosols, generally mostly

tropospheric,
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/3,/3'
m

P
ti,3'

Co

is the total ozone amount (atm-cm),

are the decadic Rayleigh scattering coefficients, atm-1,

is Bemporad's optical air mass,

is the station pressure, atm,
are the decadic optical depths for atmospheric aerosol,

is a constant including some instrumental effects and the log-ratio of the extra-
terrestrial solar fluxes.

There is no provision in the standard forward model for absorption by other atmospheric

gases such as SO2, which is the main interfering gas.

The standard DS total ozone observation recommended by the International Ozone Com-

mission and adopted by WMO is for the AD double pair (A-pair: 305.5, 325.4 nm; D-pair: 317.6,

339.8 nm), for which the forward model becomes

NAD : NA - ND = 1.388/_ + 0.012mp (14)

where 1.388 is the decadic ozone absorption coefficient difference for the double pair and 0.012 is

the decadic Rayleigh-scattering coefficient difference for the double pair.

It is assumed that (3- _')A -- (3-- _')D _ 0 for the double pair measurements. Observations

may also be made on the BD and CD double pairs (B-pair: 318.8, 329.1 nm; C-pair: 311.45, 332.4

nm).

There is no forward model for ZB or ZC observations.

3.3.2.2 Inverse Method

The inverse method for the DS observation follows directly from the forward model for the

AD double pair as

NAD mp
0.009 -- (15)

f_- 1.388/z /z

The inverse method for ZB and ZC observations is entirely empirical. It is embodied in

so-called zenith sky charts, that are developed from near-simultaneous DS and ZB observations.
For further details, see BR1.

3.3.2.3 Forward Model and Inverse Method Assessment

The forward model for the double pair neglects the relative attenuation by atmospheric

aerosol scattering and by absorption of atmospheric gases other than ozone, primarily SO2 (see

Komhyr and Evans, 1980, for example). It can be shown by Mie-scattering calculations for
reasonable aerosol size distributions that the aerosol error in AD/DS total ozone observations is

extremely small (for example, less than I matm-cm for the maximum aerosol optical depth over
Mauna Loa following the E1 Chich6n eruption). For SO2 interference in urban areas, AD/DS total

ozone observations will be approximately 1matm-cm too high for each matm-cm of SO2 present.

The forward model parameters include the ozone absorption coefficients and the Rayleigh-

scattering coefficients. These are discussed in Section 3.3.4 on Umkehr measurements.
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For DS observations, the forward and inverse models are essentially the same. The empirical

ZB sky charts must be derived empirically and will represent average conditions. Their main
deficiencies stem from the effects of aerosols on observations and the effects of differences in the

ozone profile (for the same total ozone) on the observations. For ZC observations, the optical
effects of the clouds will introduce additional errors.

3.3.2.4 Error Analysis

Ozone Absorption and Rayleigh-Scattering Coefficients

Errors in the absorption coefficient difference produce a change of scale in the total ozone

measurements. The present standard IOC/WMO absorption coefficients give total ozone values

3-4 percent higher than the Bass-Paur (1985) coefficients. Rayleigh-scattering coefficients in

current use may be in error by 1-2 percent; this will produce an insignificant bias in double-pair
total ozone observations.

Absorption by SO2

Absorption by SO2 will produce erroneously high values of total ozone, as noted earlier.

According to Komhyr and Evans (1980), the AD pair coefficient is 2.13, so that I matm-cm of SO2

would appear as 2.13/1.388= 1.53 matm-cm of O3. Evans et al. (1980) give 1.06 for this ratio.

There may be errors due to SO2 as great as 20-30 matm-cm in extreme cases (Kerr, private
communication).

Instrumental Effects

Instrumental effects that may affect the total ozone measurements include optical alignment

errors and wedge calibration errors. It is convenient to include errors in Co in this group.

Interstation comparisons, using TOMS as a transfer standard, suggest that the above-noted
errors produce a 2-3 percent variation in total ozone over the network.

Temperature Dependence

The temperature dependence of the derived total ozone is 0.13 %/K for AD pair measure-

ments. This is unlikely to be significant.

Zenith Sky Measurements

ZB and ZC total ozone measurements have considerably greater errors than the DS meas-

urements because of the empiricism in the inverse model and because of cloud effects. Errors as
large as 20 percent may occur in extreme cases (thick clouds). These errors are discussed in

Chapter 4, Ground-Based Measurements of Ozone.

3.3.2.5 Trend Estimation Assessment

Instrumental calibration changes produce errors in total ozone trend estimates made from a

single instrument. How these are reflected in errors in the trend seen by the network is discussed
in Appendix 1, Statistical Issues, and in Chapter 4.
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Absorption and scattering coefficient errors are constant and will, therefore, have no impact
on trend estimation.

Local (urban or regional) trends in tropospheric ozone are not strictly errors in total ozone

measurements, but may serve to confuse the determination of "global" trends of total ozone.

Trends in tropospheric SO2 in urban areas will also introduce spurious trends in total ozone.

Only measurements taken by the direct sun (DS) method should be used for trends studies.

3.3.3 Solar Backscatter Ultraviolet Spectrometer

The SBUV data from November 1978 to February 1987 have been archived with the NSSDC.

Instrument problems have arisen such that data collected after that date may be unsuitable for

trend analysis. SBUV-2 data will be processed with the same algorithms as SBUV data.

3.3.3.1 Forward Model

The SBUV measures solar radiation that has been Rayleigh scattered by the atmosphere into

the zenith direction and partially absorbed by ozone in the process. Ignoring the algebraic

complication of sphericity, the observed backscattered UV radiance Iobs is given by

Fo(K)fl(MP( O) f :s exp[-(1 + secO)(a(k,T)X(p) + fl(Mp)]dp + Imsr(h) (16)Iobs( k ) = 4 _r

where F0 is the direct solar irradiance, fl is the Rayleigh-scattering coefficient per atmosphere,

P(O) is the Rayleigh phase function at solar zenith angle 0, a is the ozone absorption coefficient,

X(p) is the integrated ozone amount from the top of the atmosphere down to pressure levelp, Ps is

the surface pressure, and Imsr is the contribution to the measured radiance from photons multiply

scattered by the atmosphere and reflected by the surface.

The primary unknown is X(p); all the other variables apart from F0, in Equation 16 are known,

in principle. F0 is measured by periodically viewing a diffuser plate of known reflectance,

illuminated by direct solar radiation. The accuracy of this measurement and the degradation of

the diffuser plate are critical and are discussed in detail in Chapter 2. The natural vertical

coordinate system for this problem is pressure, rather than height, so SBUV measures ozone

amount as a function of pressure.

The profile retrieval is carried out in terms of the quantity

4_r[ I(kj) - Im_r(kj)] (17)
QJ = Fo(kj)fl(hj)P( O)

i.e., the integral in Equation 16. The penetration of solar UV radiation is primarily governed by

the strength of the ozone absorption, which varies with wavelength. The Q-value has the

dimensions of pressure, and in strongly absorbing regions (shorter wavelengths) it can be

thought of as the pressure in the atmosphere at which the optical depth between the Sun and the
instrument via this scattering level is about unity. In weakly absorbing regions (longer wave-

lengths), the solar radiation is scattered mainly from below the ozone layer, so the albedo is

essentially a transmittance measurement depending largely on total ozone.
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At the shorter wavelengths, the expression for single scattering (the integral in Equation 16) is

sufficient. However, as the radiation at longer wavelengths penetrates to deeper levels (below

about 15-20 km), multiple scattering and surface reflection become important and must be

accounted for. Imsrdepends on wavelength, surface reflectivity (cloud, ground, water, or snow),
solar zenith angle, and the ozone profile. Fortunately, Taylor et al. (1980) have shown that it

depends primarily on total ozone amount, and relatively little on ozone profile shape. Tables of

I,_r have been calculated using the method of iteration of the auxiliary equation of radiative

transfer (Dave, 1964; Dave and Furukawa, 1966), where the primary scattering is calculated for a

spherical atmosphere, and higher orders assume a flat atmosphere. Imsr is pretabulated in terms

of total ozone amount and surface reflectivity.

3.3.3.2 The Inverse Method

The retrieval approach is based on the optimal statistical estimation method (Strand and

Westwater, 1968) as formulated by Rodgers (1976).

Three Retrieval Stages

The atmosphere is divided into 12 layers, based on the Umkehr layers (see Table 3.3); the

ozone amount x_ in each layer is sought. The retrieval is formulated in terms of a profile vector x
with elements ln(xi) because of the wide range of possible values of xi and to avoid negative

quantities. To give more closely spaced layers needed to evaluate the forward model, the

logarithm of total ozone Xj above each level, i.e., ln(_,_jxi), is interpolated in In p using a cubic

spline. Details of the sublayers are given in the same table.

Table 3.3 Layer Numbers Used by SBUV and Umkehr Retrievals

Layer Pressure Approx Km.* No. of SBUV

Number Range Sublayers

1 1013-253 0-10 14

2 253-127 10-14.5 7

3 127-63.3 14.5-19 7

4 63.3-31.7 19-23.5 7
5 31.7-15.8 23.5-28 7

6 15.8-7.92 28-33 7

7 7.92-3.96 33-38.5 7

8 3.96-1.98 38.5-43 7

9 1.98-0.990 43-48 7

10 0.990-0.494 48-54 7

11 0.494-0.247 54-59 7

12 0.247-0.127 59-64 7
0.127-0 64-_ 1

*Using a midlatitude equinox temperature profile.

In practise, the SBUV retrieval is carried out in three stages. First, the three or four longest

wavelength channels (depending on the solar zenith angle) are used to derive total ozone X1 and

surface reflectivity R using the algorithm described in Section 3.3.1.
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In the second stage, a linearisation point is derived using latitude, day of year, and total

ozone X1 as a guide. For layers 6 through 12, the ozone amount in layer k is given by an equation
of the form

x_ = Ak + Bkcos{2_r/365(J-Jok)} (18)

For layers 1 through 3, x_ is given by a quadratic function of total ozone, with coefficients

independent of latitude and date. The coefficients used are given in the SBUV Users Guide.
Layers 4 and 5 are fitted by assuming that the total ozone Xk above the base of layer k is cubic

through levels 3, 4, 6, and 7, where level number n corresponds to the base of layer number n.

The third stage of the retrieval uses optimal estimation. The measurement vector y consists of

ln(Qj) for each channel together with the total ozone estimate X1 from stage one. The a priori is
taken to be the same as the linearisation point determined in stage two, together with a

covariance matrix 8x, which is independent of time and place.

The forward model linearised about a vector x,, is

oQ
y = Q(x,,) + --_-(x-xn) = yn + Kn(x-x,,) (19)

thus defining the weighting functions Kn, which are obtained by numerically integrating the

algebraic derivative of Q with respect to each of the xi in turn. The linearisation of the forward
model for the total ozone measurement (i.e., X1 = X_2xi) is trivial.

The iteration to obtain x,z+ 1 from xn is

---- X a T Txn+l + SxKn[KnSxKn+S,] l[y _ Yn -- Kn( xa - xn)] (20)

starting with xl = x a. Convergence is determined by the size of xn + 1- x,.

The term Qmsr = 4_rI,,sr/FoflP(O) in Equation 17 depends primarily on total ozone amount,
surface (or cloud top) reflectivity and pressure, zenith angle, and wavelength. It is found from a

lookup table, using the retrieved total ozone, reflectivity, and a surface pressure estimated in the

same way as for the TOMS and SBUV total ozone measurement (Section 3.3.1).

A Priori Assumptions

The a priori profile/linearisation point x a, used in the estimation equation, has a complicated

history. The antecedent a priori profiles used in the original BUV algorithm (Bhartia et al., 1981)
were based on a statistical analysis of ozonesonde data (Hilsenrath et al., 1977; Mateer et al.,

1980) at levels below about 20 mb; the BUV observations at 274 and 283 nm were used to derive an
exponential form for the profile at levels well above the mixing ratio maximum. The "upper" and

"lower" profiles were joined by a cubic spline.

A priori profiles for the original processing of SBUV data were based on the World Ozone
Data Center ozonesonde data archives for layers I through 5, and on the original BUV data set for

layers 6 through 12. The profiles were fitted to an equation of the form

x_ = Ak + [1 - cos(20)][Bk + Ck cos {2"rd365(J - J0k)}] (21)
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where k is a layer index, 0 is latitude, d is day of year, and A_, Bk, Ck, and Jok are regression
coefficients.

The a priori profiles for the current SBUV algorithm (Bhartia et al., 1985) use the total ozone to

estimate the layer 1, 2, and 3 amounts, using a quadratic relationship based on soundings at
Natal, Brazil (5.9°S); Hohenpeissenberg, FRG (47.8°N); Churchill, Canada (58.8°N); and Reso-

lute, Canada (74.7°N). For layers 6 through 12, the original processing of SBUV was fitted to an

equation of the form of Equation 18.

The a priori profile error covariance matrix, Sx, was developed for layers 1 through 5 as the
covariance of the Hohenpeissenberg data set about the fitted values. The same process was used

for layers 6 through 12 using the original SBUV data set, but with the subjective modifications to
allow for the difference between the covariance of an ensemble of real profiles and that of an

ensemble of retrieved profiles. Off-diagonal elements linking the two sets of layers were

estimated subjectively. The same matrix is used for all latitudes and seasons.

Measurement Error Covariance

The measurement error 8_ for stage three includes not only the errors in the measured

radiance (0.5 percent) and total ozone (1.5 percent), but also the errors that enter into the

calculation of Yn in Equation 19 and the calculation of the multiple-scattering correction. Thus,
allowance is made for contributions to the measurement error covariance from errors in ozone

absorption coefficients due to atmospheric temperature variations (0.5 percent). Surface re-

flectivity and surface pressure errors are not accounted for, but are believed to be small.

3.3.3.3 Forward Model Assessment

Single-Scattering Model

The method of calculating single scattering is considered to be highly precise for a molecular

atmosphere because the coefficient for scattering by molecules is known to be better than 1

percent, and ozone absorption is believed to be 1 percent relatively and better than 2 percent

absolutely. We have found no serious deficiencies in the integral in Equation 16.

Multiple-Scattering Corrections

The method used for calculating the multiple-scattering contribution involves the iteration of

the auxiliary equation of radiative transfer in a pseudospherical atmosphere, in which only the

primary scattered source photons for multiple scattering are calculated for a spherical-shell
atmosphere. Higher order scattering is calculated for a flat atmosphere. This is considered to be a

"reasonably good approximation" for SBUV out to a solar zenith angle of 88 °, which is the

maximum processed by the algorithm. The accuracy of this has not been checked, and we
recommend that it should be. However, there should be no impact on trend estimates.

The lookup tables used for estimatinglmsr are calculated from standard profiles; this approach
is reasonable when Imsr is not a large correction. The error covariance matrix includes terms

caused by the error in looking up the tables, but there is no numerical estimate of the accuracy of

the parameterisation itself, particularly the dependence on the ozone profile.
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Aerosols and Other Trace Gases

The effects of aerosol scattering and absorption, absorption by molecules other than ozone,

fluorescence (both resonance and Raman), and scattering by other atmospheric gases are
omitted in the forward model.

Fluorescence from nitric oxide has been detected in the continuous scan data from the SBUV

(McPeters, 1986, 1989). Indeed, the decision not to use the 255 nm wavelength in the profiling

algorithm was made because of interference from a strong NO fluorescence band resulting from

absorption of solar radiation near 200 nm. The observed fluorescence is small (<4 percent of the
Rayleigh scattering at 255 nm for the strongest bands), and is probably smaller above 260 nm.

02 is another molecule that is observed to fluoresce above 250 nm because of excitation by

wavelengths near 200 nm (in the Schumann Runge Bands). In addition, O2 can resonantly scatter

in the Herzberg Bands between 250 and 300 nm. The analysis of the continuous scan data from

SBUV by McPeters and Bass (1982) shows no peaks above 260 nm, but the superposition of the

many fluorescent and resonant peaks could produce a quasi-continuum above 260 nm. No
estimate of this continuum has been made.

Effects of the UV-absorbing gases NO2 and SO 2 have been examined as possible sources of

error; they were found to be insignificant under most circumstances. An exception to this is SO2

from volcanic eruptions, but these are infrequent and short-lived phenomena, after which the

SO2 is rapidly converted to nonabsorbing sulphate compounds that produce stratospheric
aerosol.

Scattering by stratospheric aerosols causes an increase in the measured albedo for the SBUV

profiling wavelengths. For a normal stratospheric aerosol profile, this albedo change is strongly
wavelength dependent. Figure 3.1 is a SAGE-I average aerosol profile for 5°S latitude for
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Figure 3.1. Aerosol profile from SAGE-I: average ratio of aerosol to Rayleigh extinction at 292 rim, for 5°S
in summer 1980.
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summer 1980, plotted as the scattering optical mixing ratio (aerosol extinction/Rayleigh extinc-
tion) as a function of altitude. The impact of this profile on the SBUV albedo is plotted in Figure

3.2 for the following case. The aerosol optical properties were defined by a real index of refraction

of 1.435 and by taking the average of the properties for two size distributions of spherical Mie
particles: modal radius 0.1/.tm, standard deviation 0.4/zm, and modal radius 0.2/zm, standard

deviation 0.4/._m. The calculations were made for a low-latitude ozone profile of 250 matm-cm,

an effective surface reflectivity of 0.3, and a solar zenith angle of 0 °. The SBUV albedo change has
a rather sharp peak at 297.5 nm because the aerosol profile peak has a best match with the

Rayleigh-scattering source function (or scattering layer) producing the backscattered albedo for

this wavelength. The scattering layers for the other wavelengths are either above (X<297.5) or

below (X:>297.5), and the impact on these wavelengths is substantially reduced.

The effect of this albedo change "signature" on the retrieved profile is illustrated in Figure 3.3.
Note the profile decrease in layers 6 and 7 and the increase in layers 5 and below. The reason for

this decrease-increase pattern is that the total ozone is unaffected by these aerosols, so that the

ozone removed from layers 6 and 7 has to be replaced because of the constraint that the retrieved

profile should have approximately the measured total ozone.

This is only one example, intended to illustrate the impact of stratospheric aerosols on SBUV

retrievals. In any particular case, the impact will depend on the aerosol optical properties (a

function of index of refraction and aerosol size distribution) and on the aerosol profile. The effect
will increase with aerosol amount; the retrieved profile distortion (level of the increase-decrease

pattern) will depend on the aerosol profile shape (level of maximum optical mixing ratio).
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Figure 3.2. Calculated SBUV spectral signature for the Figure 3.1 aerosol profile. The assumed atmos-
phere contains 250 DU of ozone, the surface reflectivity is 0.3, and the solar zenith angle is 0°. Assumed
aerosol optical properties are given in the text.
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Figure 3.3. The effect of the Fig. 3.1 aerosol on the SBUV-retrieved ozone profile.

The climatology of aerosol optical properties and aerosol profiles is discussed in Chapter 10,
on aerosols. Calculations using preliminary estimates of properties and profiles suggest that the

large observed changes in SBUV albedo in the months immediately following the E1 Chich6n
eruption can be explained by calculations similar to those illustrated here.

Ozone Absorption and Rayleigh-Scattering Coefficients

The band-averaged ozone absorption coefficients for the SBUV wavelength bands are

obtained using the procedure described by Klenk (1980), using Bass and Paur (1985) measure-

ments of the ozone absorption spectrum in the ultraviolet and their reported temperature

dependence.

For the computation of single-scatter radiances, the ozone absorption coefficients are com-

puted at a nominal atmospheric temperature that varies with wavelength, determined by the

altitude at which the weighting function peaks for that wavelength.

Since the atmospheric temperature effects are more important for the computation of Ira,r, 3

standard temperature profiles are used, along with the 17 standard ozone profiles described in
Section 3.3.1.1. The scattering coefficients are based on data from Bates (1984).

Instrument Attitude Errors

The instrument views the atmosphere nominally in the nadir direction. Any error in pointing
knowledge will appear primarily as solar zenith angle errors. However, with a field of view of

11.3 degrees, the expected variations of spacecraft attitude of a few tenths of a degree will not

seriously affect the measurement. No significant bias error is expected from attitude errors.
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3.3.3.4 Inverse Method Assessment

We have found no significant problems with the inverse method. To the extent that the

forward model is correct, the retrieval will reproduce the measurements within experimental
error.

The constant a priori covariance used in the retrieval is based in part on the subjective

modification of an earlier set of SBUV and BUV retrievals. As such, it may represent an ensemble

of profiles that are too smooth at higher altitudes and, hence, constrain the retrieval too tightly.

The second-stage retrieval leads to difficulties in extreme situations, such as the Antarctic

ozone hole (McPeters et al., 1986), where the algebraic forms described in Section 3.3.3.2 are

used outside their region of validity, giving rise to unrealistic initial profiles that are reflected in

the final retrieval. However, the error analysis below shows that the profiles are unsuitable for

trend studies in this altitude range for other reasons.

Apart from the ozone hole problem, however, most of these comments are not of immediate

significance for trend measurement as they do not introduce spurious trends and are taken into
account in the retrieval characterisation presented in the next section.

3.3.3.5 Error Analysis

Forward model parameters include the absorption coefficient, o_, the Rayleigh scattering
coefficient, _fl, the diffuser plate reflectivity and its wavelength dependence, and the surface/

cloud albedo and pressure. Inverse model parameters include the a priori regression coefficients
and the a priori and measurement error covariances.

Averaging Kernels

The averaging kernels show how the retrieved ozone profile is related to the true profile. In

an ideal observing system, the averaging kernel for layer i would be unity within layer i and zero
outside. They have been computed for a range of cases, including midlatitude conditions with

total ozone of 325 and 525 matm-cm, a low-latitude case, and a high-latitude case representative
of the ozone hole.

Figure 3.4 shows the averaging kernels for a midlatitude case. These curves are partial

derivatives Olr_/Olnx of the log of the retrieved layer amount, with respect to the log of each of the
sublayer amounts.

We note that layers 6 to 9 or 10 give averaging kernels (ak's) centered at approximately the

correct nominal level and with a full width at half maximum of about 1.6-2 Umkehr layers (8-10
km). The layer 10, 11, and 12 ak's are all centered on layer 10, with significant negative excursions

at layer 8. The layer 5 ak is very broad, whilst the layer 1 to 4 ak's are generally peaked in the

wrong place, have significant negative excursions, and are found to vary considerably from one
case to the next.

We must conclude that only the retrievals from layer 6 to layers 9 or 10 are of value for trend

estimation as they stand. Trends derived from layers 1 to 5, 11, and 12 may be misleading

because the retrievals depend on the ozone variations at other levels. It may be that the retrievals

for these layers are reasonable estimates of ozone in those layers on a single profile basis, but that
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Figure 3.4. SBUV averaging kernels for retrieved layer amounts. The reference profile is at a midlatitude
(45°), solar zenith angle is 45°, and a total ozone amount is 325 DU. The curves are labeled with layer
numbers and offset by multiples of 0.5 for clarity.

is because there are correlations between levels in the ozone climatology. This is not appropriate

for trend estimation, where past climatology of individual profiles may not be a good estimate of

the climatology of future changes.

Sensitivity to Diffuser Plate Reflectivity

If the measured value of the diffuser plate reflectivityDx is in error by _Dx, then the measured

Q-value will be in error such that $1n(Qx) = _ln(DD = 3Dx/Dx. Thus, the sensitivity of the retrieved

profile to diffuser plate errors is the same as its sensitivity to the measured Q-value. On the basis

of the discussion of diffuser plates in Chapter 2, we have carried out several tests of the

sensitivity of the retrieved profile to diffuser plate reflectivity:

(a) A random error of I percent in D_, uncorrelated between wavelengths, but constant in

time. This gives a contribution to the formal random error in the profile, but should have
no effect on the measured trend. The rms of this error source is curve (a) in Figure 3.5.

(b) A constant error of 1 percent in Da at all wavelengths. Thus a drift of I percent per year in
the error in Da would lead to an annual drift in profile given by curve (b).

(c) A random error of 2 percent in r(k), the formal uncertainty quoted in Chapter 2. This is
assumed to be uncorrelated between wavelengths, but constant in time. It leads to a scale

error proportional to exposure time, whose value is random with an rms value given by

curve (c) in Figure 3.5 for E = 761 hours (8 years).
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Figure 3.5. (a) rms error in the SBUV profile due to a 1percent random error in D_. (b) increase in ozone due
to an increase in Dxof 1 percent at all wavelengths. (c) rms scale error due to a 2 percent random error in r(X),
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(d) A constant error of 5 percent in r(X). Five percent is roughly the scatter of the values of r
given in Chapter 2, Figure 2.10. Curve (d) shows the effect of this error at E = 761 hours.

(e) We have also considered the alternate diffuser plate models M1, M2, and L of Chapter 2.

The change that these make to a retrieved midlatitude profile is shown in Figure 3.6, for a
profile measured at the end of the data set, after 8 years. The change here is so large that it

is probably outside the bounds of this linear error analysis, but this should give a guide to

the magnitude of the error.

Sensitivity to Atmospheric Temperature

The retrieved ozone profile will depend on atmospheric temperature through the tempera-

ture dependence of absorption coefficient. Figure 3.7 shows the percentage change in the
retrieved profile to a temperature perturbation of 1K in each layer. We note that, to produce a 1

percent change in ozone at level 6, we would need about a 10K change in temperature in layers 6
and 7.

Sensitivity to Surface or Cloud Top Reflectivity and Pressure

The sensitivities of the profile to surface or cloud top reflectivity and pressure are shown in

Figure 3.8. Except at levels 1 to 3, both are very small and are unlikely to be significant.
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Sensitivity to Ozone Absorption and Rayleigh-Scattering Coefficients

The ozone absorption coefficients and Rayleigh-scattering coefficients, or their errors, will

not change with time. Therefore, errors due to this cause will not contribute to trend errors. The

sensitivities shown due to these causes are given in Figure 3.8 for completeness.

Sensitivity to Aerosol

A formal error analysis of the sensitivity to aerosol is complex, and has not been carried out by
us. A case study giving a typical impact is discussed in Section 3.3.3.3 above; further discussion

will be found in Chapter 10.

3.3.3.6 Trend Estimation Assessment

The averaging kernel plots indicate that SBUV data should be capable of representing the
ozone profile between Umkehr layers 6 and 9 or 10 (16-0.7mb, 28-51 kin) with a vertical

resolution of 1.6-2 layers (8-10 km). Trends should be measurable in the same range with the

same resolution, except insofar as they are aliased by trends in other quantities involved in the

retrieval. The most important uncertainties, which may introduce unreal trends into the data,

are diffuser plate reflectivity and atmospheric aerosol. Our best estimate of the diffuser plate

uncertainty leads to the conclusion that the apparent trends in currently archived SBUV ozone

profiles (Chapter 5) are not significantly different from zero, and that SBUV measurements are

not capable of definitively identifying the ozone depletion due to chlorofluorocarbons (CFC's)
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that is predicted by the chemical models (Chapter 7). This position may change if further

information on the diffuser degradation becomes available. This does not, of course, apply to

SBUV-2, for which an archival data set is not yet available.

Atmospheric temperature, as well as surface or cloud-top reflectivity and pressure, have the

potential of introducing apparent trends, but these effects are small.

The problem with the second stage of the retrieval mentioned in (d) above implies that

current SBUV profile data below about 20 km cannot be used for ozone hole studies. However,

the averaging kernels analysis implies that the retrievals in that altitude range are dubious for
other reasons.

3.3.4 Dobson Ozone Spectrophotometer: Umkehr

The Dobson spectrophotometer measures the ratio of zenith sky or direct Sun radiance at two

wavelengths in the ultraviolet. An Umkehr observation consists of a series of zenith sky

measurements taken as the solar zenith angle changes from 60 ° to 90 °. The observation includes a

concurrent measurement of the total ozone column with the same instrument (Section 3.3.2). In

the standard technique, as reported in the World Ozone Data Center archives, the C-pair of

wavelengths centered at 311.45 and 332.4 nm is used. The present standard algorithm, which is

described and assessed in this section, was developed by Mateer and Datsch (1964).

3.3.4.1 Forward Model

The solar radiation received by the instrument is scattered mainly by the gaseous atmosphere

and absorbed mainly by ozone. The physics of the measurement is basically the same as that for

SBUV (Section 3.3.3), but the geometry is different.

The forward model used in Umkehr retrieval accounts for scattering only by the gaseous

atmosphere (assumed to obey the Rayleigh scattering law) and for absorption only by ozone. For

this idealized atmosphere, computation of zenith sky light is relatively straightforward, al-

though somewhat tedious, especially at solar zenith angles near 90°, where the effects of the
sphericity of Earth need to be accounted for precisely. Since the scattering optical depth of the

atmosphere at the Umkehr wavelengths is near unity, multiple-scattering effects are also

important.

In the real atmosphere, there is also scattering by the dust and aerosols suspended in the

atmosphere at different altitudes. Other gases, such as SO2, are also sometimes present in
sufficient quantities to provide significant absorption.

Determination of Ozone Absorption Coefficient

The Dobson instrument has a band-pass of about 1 nm at the shorter wavelength and close to

4 nm at the longer wavelength of the C-pair. Therefore, the instrument is sensitive to the

radiation received in a range of wavelengths over which the scattering and absorption properties

of the atmosphere may vary. For forward model calculations, however, it is convenient to
assume that the instrument is sensitive to a pseudo-monochromatic radiation, having both an

effective ozone absorption value and an effective scattering cross-section. The effective ozone

cross-sections used in the standard Umkehr algorithm were obtained by convolving the meas-
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urements of Vigroux (1953) (at -44°C) with the nominal instrument band-passes for each

wavelength (for band-passes, see Vigroux, 1967). These cross-sections are published in the
Dobson instrument manual (Dobson, 1957b).

Computation of N-Value Tables attd Derivatives

The full forward model is too complicated for efficient use in standard retrievals, so it is

approximated for this purpose by a set of second order Taylor series expansions of the full model
about a set of three standard profiles.

The N-value tables and first-order partial derivatives used in the standard algorithm are
calculated in a manner that accounts for the sphericity of Earth for the primary and second-order
scattering. A flat-atmosphere multiple-scattering code was used to calculate the ratio of total

multiple scattering to secondary scattering. Each spherical-shell secondary scattering radiance

was then multiplied by the appropriate ratio to obtain an equivalent spherical-shell total multiple
scattering. For the first-order partial derivatives, this same radiance ratio was used to obtain an

equivalent spherical-shell multiple-scattering partial derivative. The calculation of the second-

order partial derivatives involved only primary scattering in a spherical-shell atmosphere. The
effects of atmospheric refraction were not included in these calculations.

3.3.4.2 The Inverse Method

The inverse method is based on the "minimum information" method of Twomey (1963).

[/(x'O'_l) ] + C o (22)
N(x,O) = lOOloglo t/_,O, h2)

where x is the profile to be estimated, 0 is the solar zenith angle, I(x, O,X) is the zenith sky radiance

at wavelength _., and Co is the "extraterrestrial constant," a combination of the solar spectrum
and the instrumental response. The measurement vector y comprises the Dobson total ozone

Xobs and the quantitiesN' (x, Oi), obtained by subtractingN(x, 60 °) from each of the other N-values.

The elements of the profile vector x are - ln(xi), where xi is the ozone amount in Umkehr layer
i.

The second-order expansion of the forward model is written

Y = Ystd + K(x - Xst d) q- (x - Xstd)TL(x -- Xstd) (23)

where K is the first-order derivative and L is the second-order derivative, both evaluated at Xstd.
For the retrieval, the vector u is defined

III ---- K(x - Xst d) -- y - Ystd -- (X -- Xstd)TL(x -- Xstd) (24)

An ozone conservation equation is added to the set as the forward model for Xob_. The
retrieval iteration is

_n = Xstd q_ (KTK+.yI) 1Krun 1 q-'y(Xfg - Xst d) (25)

where x"- 1 is used in evaluating the quadratic term in u" 1, Xfg is a first-guess profile, and _/is
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Twomey's smoothing constant. The convergence criterion is based on the change in size of the

quadratic term between iterations.

Three standard profiles are used, each containing different amounts of total ozone. The

linearisation point is chosen to be one of the three, on the basis of the total ozone amount. The
first-guess profile is also chosen to be one of the standard profiles on the same basis, except that

for total ozone amounts near the changeover points, a linear interpolation is used so that there

are no discontinuities in the first guess as a function of total ozone. No seasonal or latitudinal

variation is used in the standard profiles.

3.3.4.3 Forward Model Assessment

Ozone Absorption Coefficient Calculation

The spectral characteristics of the received radiation depend on the extraterrestrial spectrum,
the solar zenith angle, the ozone profile, the temperature profile, and the scattering and

absorbing constituents of the atmosphere. Consequently, strictly speaking, for a given effective

ozone cross-section, agreement between calculated and "true" band-pass-averaged radiation

can occur only for a limited range of conditions. Fortunately, simulation studies suggest that this

error is less than 1 percent for a broad range of atmospheric conditions.

The algorithm is based on the assumption that all instruments in the Umkehr network have

essentially the same band-pass. Actual instrument band-passes have been measured for only

one instrument (Komhyr, unpublished), and these were generally broader than the nominal

band-passes used by Dobson (1957a,b). However, interstation total ozone intercomparisons,

using TOMS as a transfer standard, suggest that the standard error in total ozone measurements

arising from both absorption coefficients (via band-pass and spectral alignment problems) and
from extraterrestrial constant (Co) errors combined does not exceed about 2 percent (Bojkov and

Mateer, 1985; conclusion from data in their Table 1). This may be considered an indication of

interstation precision.

Insofar as absolute errors in the effective absorption coefficients are concerned, Table 3.4 is
relevant.

Table 3.4. Effective Ozone Absorption Coefficients for Dobson C-Pair

Source T(°C) Short Long Diff. Ratio

_1. Dobson, 1957,

Vigroux, 1953 - 44 2.100 0.108 1.992 19.4
2. Vigroux, 1967 - 50 1.957 0.099 1.858 19.8
b3. IOC-WMO, 1968 -- (1.941) (0.099) 1.842 (19.6)

4; Bass & Paur, 1985 -45 2.0044 0.0917 1.9127 21.86
c5. Error Tests -- 1.9303 0.0883 1.842 21.86

% Range excl. (5) 8.2 17.8 8.1 12.7

_Standard Algorithm
_'Effective 1/I/68
CSection 3.3.4.5
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The absorption coefficient difference in line 3 was adopted by WMO in 1968 for use in total

ozone measurements, but values were not specified for the individual wavelengths. The values

in parentheses were estimated for use in the assessment of the sensitivity to errors in absorption
coefficient and spectral alignment in Section 3.3.4.5. The values in line 1, used in the standard

algorithm, are considerably in error, due at least in part to the spectral sparseness of the early

Vigroux measurements. The Bass-Paur data are stated to have a precision of 1 percent between

245 and 330 nm. The precision at the tong C wavelength is not this good--perhaps 2 percent. The
absolute accuracy is related to the measurement of Hearn (1961) of the ozone cross-section at

253.65 nm, which is believed to be accurate to about 2-3 percent. The assumption in the standard

algorithm of an isothermal atmosphere (- 44°C) introduces distortion in the retrieved profiles,
due to temperature dependence of the absorption coefficient.

Calculation of N-Value Tables and Derivatives

The quadrature for the spherical-shell part of the N-value and partial derivative calculations

should be accurate to better than 0.5 percent for primary scattering and to 1 percent for secondary
scattering. The quadrature for the flat-atmosphere multiple-scattering calculations should also
be accurate to better than I percent. The extension of the flat atmosphere calculations to third and

higher orders of scattering in a spherical atmosphere may lead to errors as great as 3 percent
(estimated) in the radiance ratio (1.3 N-units) for a solar zenith angle of 90 °, where the error is

greatest. Errors in the first-order partial derivatives may be somewhat greater.

The application of the second-order partial derivatives, which are calculated for primary

scattering only, involves some empirical adjustments developed by Dtitsch (unpublished). This
process should not involve significant errors for ozone profiles close to one of the standard

profiles. Errors for profiles that are not close to one of the standard profiles have not been
determined; they may be significant.

Aerosol and Other Scattering

The forward model used in the Umkehr retrieval does not account for the scattering by dust,
aerosols, and thin clouds sometimes present during the measurement. The main reason for this

is that the quantity of suspended matter is extremely variable from day to day, and its optical

properties are rarely known accurately enough to include it correctly in the forward model.

Consequently, the error introduced by aerosol scattering remains the most significant source of

error in Umkehr retrievals over the short term, as well as in determining seasonal and long-term
variations of ozone.

With the present-day theoretical capability of calculating radiative transfer for a molecular
medium, including large-particle scatters, it is possible, in principle, to include aerosol effects

directly into an Umkehr forward model. This would be valuable only if the aerosol properties

were known a priori for each observation. However, the Umkehr inverse model is not capable of

separating aerosol information from ozone information. Aerosol properties that must be known

are phase function, albedo of single scattering, and vertical profile. It is not practical to measure

these properties, which can be quite variable with time, at all Umkehr stations on a regular basis.

A detailed discussion of the effect of aerosols on Umkehr retrievals, and on possible

approaches to making corrections, is found in Chapter 10.
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Absorbers Other Than Ozone

The only known absorber of any significance that has been omitted from the forward model is

SO2, which may occur in highly polluted urban environments (see Section 3.3.2) and in the

stratosphere as a short-lived species immediately after major volcanic eruptions.

3.3.4.4 Inverse Method Assessment

Accuracy of the Second-Order Expansion

The standard algorithm starts with a known linearisation-point profile and a precomputed

table of N-values. As the estimated profile is modified during the iteration process, the table

values are adjusted to account for the change. This adjustment is calculated using precomputed
coefficients of a truncated (after second order) Taylor series expansion of the N-values around

the a priori profile.

As discussed in Section 3.3.4.3, the calculation of these coefficients is not sufficiently accurate

and may introduce error in the forward model calculation. The impact of error in the coefficients

will be insignificant when the atmospheric ozone profile is close to the a priori, but could be
significant when it is not.

Ozone Above Layer 9

The retrieval method solves for the ozone amount in layers 1 to 9. However, there is enough

ozone above layer 9 to cause significant absorption of the strongly absorbing wavelength at large

solar zenith angles. The Umkehr retrieval assumes an a priori value of 2.07 matm-cm above layer
9, and that this amount is always 54 percent of the layer 9 amount. These figures are derived

primarily from photochemical calculations carried out in the early 1950's. Recent satellite and

rocket measurements indicate that 2.07 is too large, by about 50 percent, and that the value varies

seasonally.

3.3.4.5 Error Analysis

Averaging Kernels

Averaging kernels have been computed for a range of cases, showing how the retrieved layer

ozone is related to the true ozone profile. In an ideal observing system, the averaging kernel for

layer i would be constant within layer i, and zero elsewhere. Figure 3.9 shows that is by no means

the case. Only one example is shown; the others gave results that were qualitatively similar but

that differed in detail. A summary of the peak heights and widths of the averaging kernels is

given in Table 3.5.

We note that, for layers 4 through 8, the averaging kernels are peaked at approximately the

right level, with a full width at half maximum of around 2.5 layers. The kernels for layers 3 and 9

have significant negative excursions; they are peaked about one layer too high and low,

respectively. The kernels for layers 1 and 2 are more complicated functions of the true profile;

they appear to be unrelated to the ozone in those layers. The averaging kernel also describes the
relationship between the measured trend profile and the true trend profile, so trends with a

broad vertical structure between layers 4 and 8 would be reasonably well measured, but

retrieved trends in layers 1, 2, 3, and 9 should be treated with caution.
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Table 3.5. Averaging Kernel Peak Heights and Widths

Layer Level of Maximum Full Width Half Height

Layer p(mb) H (km) Layers H (km)

1 -- 1013 0 2.4* 12

2 3.56 60.6 19.4 2.9 14.5

3 4.06 42.9 21.6 2.4 12

4 4.56 30.3 23.8 2.8 14
5 5.31 18.0 27.2 2.9 14.5

6 6.19 9.84 31.2 2.6 13

7 6.69 6.96 33.5 2.3 11.5

8 7.69 3.48 38.3 2.2 11

9 7.94 2.92 39.6 2.0 10

*One-sided

Absorption Coefficient and Spectral Alignment

Errors in the ozone absorption coefficients used in the algorithm have been discussed in

Section 3.3.4.3. A spectral alignment problem may be considered equivalent to an absorption
coefficient error for an individual instrument.
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Umkehr retrievals are sensitive to the difference in the absorption coefficients for the short-

and long-wavelength channels and to their ratio. An error in the difference produces, primarily,

an error in scale, accompanied by some profile distortion. An error in the ratio of the coefficients

produces profile distortion in the retrievals. The sensitivity of the retrieval to errors in the

coefficients for the individual channels is shown in Figure 3.10. This result has been obtained by
perturbing the standard algorithm.

Additional results have been obtained using another algorithm in the following manner.
First, the values in line 3 of Table 3.4 were used to obtain an average Umkehr retrieval for 20

Umkehr observations at Arosa (Switzerland) in 1980. Second, the values in line 5 were used to

obtain an average retrieval for the same 20 Umkehrs. This retrieval, shown as a percentage

difference from the first one in curve (a) of Figure 3.11, illustrates the effect of changing the

coefficient ratio to the Bass-Paur value while holding the coefficient difference unchanged. This

coefficient change produces very little profile change in layers 1 and 6, increases up to 1 percent

in layers 2-5, and decreases as much as 4.5 percent above layer 6, i.e., a profile distortion. Curve

(b) in Figure 3.11 is obtained using the Bass-Paur values in line 4 of the table. As noted above,

comparing curve (b) with curve (a), this has produced primarily a scale change of between 3 and 4

percent, except in layer 1 where there is little change. Roughly similar results would apply if this
procedure could be applied to the standard algorithm.
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Finally, we must explain how the change in 1968 in the scale of C-pair total ozone has been
handled in the standard algorithm. First, the observed total ozone value on the 1968 scale is

multiplied by 0.925 (= 1.842/1.992) to reduce it to the scale implied by the coefficients used in the

algorithm. The inversion is then carried out using the algorithm. Finally, all layer amounts in the
retrieved profile are divided by 0.925 to convert them back to the 1968 ozone scale. This

procedure introduces some profile distortion (similar to curve (b) minus curve (a) in Figure 3.11),
but should have little effect on ozone trends derived from Umkehr profiles. Curve (b) alone gives

an idea of the overall profile bias (distortion) caused by the use of the incorrect coefficients.

Temperature

Umkehr profile retrievals are also sensitive to atmospheric temperature through the tempera-

ture dependence of the ozone absorption coefficients. The short wavelength coefficient of the

C-pair has a temperature sensitivity of 0.15%/K, while the long wavelength sensitivity is
0.37%/K. Failure to include this temperature dependence, as in the standard algorithm, which

assumes a constant temperature of -44°C, produces an additional profile distortion. This
distortion is such that atmospheric layers that are warmer than - 44°C will have too much ozone

in the retrieved profile, and vice versa. The result of adding the temperature dependence for an

average midlatitude temperature profile is illustrated by comparing curve (c) with curve (b)

(isothermal atmosphere at - 44°C). The greatest effect is seen in the 40-50 km region, where the
temperature is significantly warmer than -44°C.

It is evident that real temperature trends will introduce fictitious ozone trends in Umkehr

profiles. Figure 3.12 illustrates the effect of a 20K temperature change in each layer. For this

z:
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Figure 3.12. Sensitivity of Umkehr-retrieved ozone to atmospheric temperature changes. The curves are
labeled with the number of the layer in which the temperature is perturbed by 20K and are offset by 1%/20K for
clarity.

particular test, the troposphere (layer 1) has been divided into two layers (curves 0 and 1). We

may conclude that realistic atmospheric temperature trends will have a rather small effect.

Rayleigh- Scattering Coefficients

The Rayleigh-scattering coefficients _ are known to better than 1 percent. The change in the

retrieved profile for a change in 13of I percent is shown in Figure 3.13. This is a small but constant

systematic error.

Total Ozone Measurement

An error in the extraterrestrial constant Co has no effect on the N-values, but affects the total
ozone measurement. As noted in Section 3.3.4.3, this error combined with others does not

exceed about 2 percent over the Dobson network. Sensitivity of the retrieved profile to the total

ozone measurement is given in Figure 3.14. This sensitivity is small, except for layer 1.

Surface Reflectivity

The standard algorithm assumes zero surface reflectivity, whereas typical reflectivities might

be around 20 percent, approaching 100 percent in the case of snow cover. Sensitivity to assumed

surface reflectivity is given in Figure 3.15. The error in retrieved ozone is unlikely to be more than
about 1 percent, except in layer 1. This is unlikely to contribute to errors in trends.
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Figure 3.13.

Figure 3.14.
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Multiple-Scattering Correction

The error in the multiple-scattering correction has not been determined. An estimate of this

error has been obtained by computing the corrections, using the pseudospherical atmosphere

method for one of the standard profiles, and taking the difference between these corrections and

those used in the standard algorithm. The effect of this difference on the retrieved profile is

shown in Figure 3.16. The profile changes are small for layer 4, with roughly a 5 percent increase
for higher layers, and decreases below layer 4 with a maximum 20 percent decrease in layer 2.

These errors should be primarily systematic and have little effect on trends.

Other Absorbers

The effect of unaccounted SO2 absorption on the retrieved profile, for 1 matm-cm in the lower

half of layer 1, corresponding to a typical background (i.e., low pollution level) urban tro-

posphere (Kerr, private communication), is shown in Figure 3.17. Also shown is the effect of a

moderately heavily polluted troposphere, with 10 matm-cm. This is significant for quality
control, but should not be for trends, unless a significant number of stations are in polluted
areas.

Volcanic SO 2 is very short lived and has not been considered here.

Other Effects

Wedge calibration and other similar discontinuities in the record may be corrected if the
information is available (it has been done for Belsk, Poland). This has nothing to do with the
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Figure 3.16.
correction.

Figure 3.17.
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algorithm. If the necessary information is not available, then the problem is best handled by

statistical methods; again, not a problem to be discussed in this chapter.

Nonlinearity errors have been discussed in Sections 3.3.4.3 and 3.3.4.4. Although such errors

are not systematic in individual cases, they should average out to a roughly systematic error in
trend estimation.

The "no refraction" assumption will lead to a systematic error such that derived ozone
amounts in the uppermost layers are too low. This is understandable because the slant path

attenuation is always decreased when refraction is added, and the scattering layer is always

lower in the atmosphere for the longer wavelength of the pair, leading to a higher N-value at the

larger zenith angles where the effect is greatest. The error is probably small, but it may depend,

to some extent, on the amount of ozone at upper levels, thereby leading to an over- or

underestimation of 40 km trends. This trend impact should be very small.

3.3.4.6 Trend Estimation Assessment

Many of the sources of error are unimportant for trend estimation because they should

average out over the network, or over time, as instruments are periodically recalibrated, or if
they have constant systematic errors. The important error sources are the sensitivities to

atmospheric quantities that may have their own trends. It is unlikely that any instrumental
parameter will have a trend that is repeated across the network. However, we should always be

aware of sampling problems with a small network.

It is important to understand how true trends are reflected in the retrieved trend quantified

by the averaging kernels, which indicate that the Umkehr retrievals for layers 4 through 8 (63-2

mb, 19--43 km) correspond to means over layers -2.5 layers (12.5 kin) thick, centered on

approximately the correct nominal altitude. Outside this altitude range, and at higher vertical
resolution, information about trends should be treated with caution. This is important, since the

postulated chlorofluoromethane (CFM) effect will occur in layer 8 of the atmosphere. Retrievals

from the standard Umkehr algorithm may show ozone being displaced upward in the

atmosphere.

The most important quantities that may have trends unaccounted for in the Umkehr retrieval

scheme are stratospheric aerosol, tropospheric pollution, and temperature.

Amounts of stratospheric aerosols, which vary with time, are undoubtedly the most impor-

tant source of error in the long-term trend determination from Umkehr. Attempts have been

made to do a first-order correction using the Mauna Loa Sun-sensor data. More recently, lidar

measurement results are being used to obtain better corrections for the time period following the

El Chich6n eruption. However, the accuracy of the correction schemes used so far is still an open

question.

Background urban tropospheric SO2 levels (1 matm-cm) will cause negligible error in layers 4

to 8, but moderately heavy pollution (10 matm-cm) may cause errors of about I percent. As this is

likely to be confined to a few heavily polluted urban areas, it is unlikely to be important for global

trends, unless a significant number of stations are in polluted areas.

A false change of 1 percent in ozone in layers 4 to 8 would require a change of 10-15K in
stratospheric temperature. This is unlikely to be a source of significant uncertainty.
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3.3.5 Stratospheric Aerosol and Gas Experiment

The SAGE measures extinction of solar radiation in a limb path in the wavelength region from

380-1,020 nm. SAGE-II, currently in operation, measures sunrise and sunset extinction at seven

wavelengths: 1,020, 936, 600, 525, 452, 448, and 385 nm. Those important for determining the

altitude distribution of ozone are the aerosol-sensitive wavelengths of 1,020, 525, and 385 nm,
and the ozone-sensitive wavelength of 600 nm. It is important to note that other measured

constituents, such as NO2, also contribute to the extinction at these wavelengths, if only slightly.

SAGE-II data have not yet been archived with NSSDC, but have been made available to the

Ozone Trends Panel; it is the algorithm by which this data set was processed that is discussed

here. SAGE-I was an instrument similar to SAGE-II, but with only four spectral channels, at

1,000, 600, 450, and 385 nm. The original inversion algorithm (Chu and McCormick, 1979),

corresponding to the data in the NSSDC archive, is significantly different from that used in the
SAGE-II data reduction. Because of the recent effort in ozone trend work, SAGE-I data have

been reprocessed using an algorithm similar to the one used for SAGE-II; the reprocessed data
are used in this report for comparison with other ozone data. The following discussions about

the SAGE-I inversion algorithm will be understood to refer to the reprocessing algorithm.

The instrument has a field of view of 0.5 minutes of arc, which corresponds to 0.5 km at the

limb. The instrument scans the solar disk during each measurement sequence to produce vertical

profiles of constituent extinction. During a measurement sequence, the SAGE radiometer scans

the Sun from top to bottom, as viewed from the spacecraft, at a scan rate of 15 minutes of arc per
second. The Sun is scanned about 20 times for a normal sunset or sunrise event. Each channel is

sampled 64 times per second and digitized to 12 bits.

Neither SAGE-! nor SAGE-II produces complete global data sets; thus, it is difficult to

separate seasonal and long-term trends from the respective data sets. The first use of the SAGE

data, therefore, is in a comparison with SBUV when both instruments observe the same ozone

field. This comparison yields the long-term differences in calibration or changes in the relative
bias between the two instruments.

3.3.5.1 Forward Model

The irradiance Hx measured by the instrument at a given time t is given by

Hx = f ,,,f IoxWx(O, cb)Fx(O, dp,t)Tx(O)dt2dX (26)

where I0x is the incoming solar spectral radiance, W is the radiometer's FOV function, ¢ is the

azimuthal angle, f_ is the solid angle, T is the transmittance of the atmosphere as a function of

view angle O, and F is the extraterrestrial solar radiance for wavelength X. The mean transmit-

tance over the spectral bandwidth and instrument field of view is obtained by dividing the
irradiance measurements by those for a solar scan above the atmosphere. The transmittance

function in terms of the minimum ray height is given by

T_(h) = exp[- f fi_(h)dl_(h)] (27)

where ]3is the total extinction coefficient of the atmosphere as a function of altitude h, and l is the
geometric path length corrected for refraction.
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The total extinction at each altitude is a linear combination of the extinctions of each
constituent measured.

/3_= #R(x) + #o3(X)+/3NO_(X)+ _A(x) (28)

where fiR(X) is the extinction coefficient for Rayleigh scattering, flo3(k), flNO_(X), and flA(X) are the
extinction coefficients for ozone, nitrogen dioxide, and aerosol, respectively. It is assumed that

there are no other constituents contributing to the extinction. For ozone and nitrogen dioxide,

the extinction coefficient is given by the product of the number density and the absorption

cross-section at the given wavelength.

The aerosol extinction coefficient is a function of aerosol size distribution, shape, and index of

refraction. The following formula applies to homogeneous, spherical particles:

]3A(_K) = fO o'(n,r,X)N(r)dr (29)

whereN(r) is the size distribution function and o-(n,r,X) is the extinction cross-section for a particle

with refractive index n and radius r, as computed from Mie theory. Because of the finite number

of spectral channels being used, only a limited amount of information on either the aerosol size

distribution or the wavelength-dependent extinction coefficient can be deduced. The refractive

index is assumed to be 1.43, corresponding to sulfuric acid aerosol.

3.3.5.2 The Inverse Method

The procedure for inverting the SAGE-II data follows the approach taken in the inversion of
the SAGE data, the basic algorithm for which is discussed by Chu and McCormick (1979). A

two-step technique is used. The line-of-sight transmission measurements at the seven wave-
lengths are first separated into optical depths for each species, separately for each tangent

altitude. These line-of-sight optical depths are then inverted for each species to give vertical

profiles, assuming horizontal homogeneity.

After calibration, the data consist of optical depths at each wavelength, for each tangent

height. Each is a linear combination of the line-of-sight absorber amounts of 03, NO2, the aerosol

optical depth at each wavelength, and the Rayleigh-scattering optical depth. The tangent heights
for the measurements are calculated from the satellite ephemeris and time in the case of

SAGE-II. In the case of SAGE-I, this is not accurate enough; the height reference is obtained by

matching the retrieved density profile with that calculated from the U.S. National Meteorological

Center (NMC) data. The Rayleigh-scattering optical depth is calculated for each tangent ray

using atmospheric temperature, pressure, and height data supplied by NMC, based on both
radiosonde and satellite measurements. It is then removed from the measurements. The NO2

component is calculated from the differential measurement supplied by the 448 nm and 453 nm
data and removed from the measurements. The resulting five channels (ignoring the 954 nm

water vapor channel, which is dealt with separately) are then used to solve for the ozone optical

depth at 600 nm and for the four aerosol optical depths at 1020, 525, 453, and 385 nm.

The procedure for separating the ozone optical depth at 600 nm from the aerosol contribution

is as follows: representing the aerosol size distribution IV(r) at a finite number of sizes rj, j = 1...m,

the aerosol extinction at the four wavelengths can be written as
rt_

[3i = E, aij(n)Nj i= 1...4 (30)
j=l
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which is an underconstrained set of linear equations for Nj. These can be solved using Twomey's
minimum information solution (1963)

N = KT(KKT+F) it (31)

where K is a matrix with elements cr0, N is a vector with elements Nj, and F is a diagonal matrix with

elements proportional to the estimated noise level at each aerosol wavelength. The aerosol
extinction at 600 nm can then be expressed as a linear function of the retrieved N, and hence as a

combination of the extinction values at the other four wavelengths:

f16oo = K6ooN

= K6ooKT(KK v + F) 13

= aft

(32)

The four coefficients ai can be precomputed, assuming only that the scattering is due to Mie
particles with given refractive index. The aerosol extinction cross-section is calculated with the

anomalous diffraction approximation.

The line-of-sight optical depth profile for each species is inverted using Twomey's modified

Chahine algorithm (Twomey et al., 1977). The vertical profile for each species is represented by its

averaged extinction in homogeneous slabs of I km thickness. Therefore, the line-of-sight optical
depth for each species can be expressed as the product of a path-length matrix with each extinction

profile. Since the measured signals for all channels decrease at a higher altitude, a 5 km vertical

smoothing of the retrieved profile at high-altitude level is performed during each updating cycle in
the inversion algorithm. Iteration is stopped when the residue between the measurement and the

calculated optical depth approaches the estimated measurement uncertainty.

The primary difference between the SAGE-I and the SAGE-II inversion algorithms is the
separation of optical depth values for aerosol, ozone, and NO2. Because of the limited number of

channels on SAGE-I, insufficient information is available to give a good description of aerosol

optical depth versus wavelength behavior. In addition, the aerosol has almost the same spectral

variation as NO2 between 450 and 385 nm, thus making their separation impossible if only the
measured data are used. In the SAGE-I algorithm, aerosol optical depth values at 450 and 385 nm

are assumed to be a constant multiple of the values at 1,000 nm for altitudes above 27 km. The

constants are determined assuming the aerosols are log normal distributed with refractive index

n = 1.43, mean radius r = 0.07/.Lm, and spread cr = 1.8 (log or= 0.59). Similarly, the NO2 optical

depth values below 27 km are calculated assuming constant NO2 density. The aerosol optical
depth values at 600 and 385 nrn are then estimated with the same method as in the case of
SAGE-II.

r

3.3.5.3 Forward Model Assessment

The aerosol representation is restricted to spherical Mie particles with a uniform index of

refraction. Effects due to nonspherical shapes and nonuniform refractive index or composition
are not included.

Ozone absorption cross-section measurements from Penney (1979) are used here. In the UV,

these differ from those of Hearn (1961) by about 5 percent, which could lead to a bias in the ozone

values. For NO2, the unpublished data by Johnston and Graham (1977) are used. The accuracy of
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ozone absorption cross-section at 600 nm is probably within 5 percent, while the accuracy at

wavelengths other than 600 nm is probably not better than 10 percent. For NO2, the accuracy of
the absorption cross-section at all wavelengths is not better than 10 percent. However, this will

produce only a constant systematic error and will have little effect on trend studies.

Measurements by Penney (1979) and by Vigroux (1953) indicate that the ozone Chappuis

band centered at 600 nm showed no temperature dependence, while data from Vassey and

Vassey (1948) showed some variation with temperature. It is likely that the temperature
dependence of the ozone absorption cross-section at the SAGE-II spectral region is small and

insignificant for ozone trend estimation. For the NO2 absorption spectrum, Bass's et al. mea-

surements (1976) for wavelengths below 400 nm indicated about a 10 percent change between

room temperature and - 40°C. However, there are no measurements of temperature effect at the

wavelengths used by SAGE-II (448 and 453 nm). Due to the small effect of NO2 on SAGE-II

ozone determination, it is unlikely to affect ozone trend studies.

3.3.5.4 Inverse Method Assessment

NMC Temperature Field

The Rayleigh contributions at all seven channels are calculated from the NMC temperature
and pressure data. The NMC temperature data are derived mainly from rawinsonde data at

altitudes of 30 km and below and from satellite soundings above 30 km altitude. The accuracy of

the NMC temperature data being used by the SAGE-II inversion algorithm is believed to be

about I percent at or below 10 rob, degrading to 6-7 percent at 0.4 mb pressure level. However,

due to the small contribution of Rayleigh extinction at 600 nm, the basic SAGE-II inverted

product--ozone number density versus geometric height--is not sensitive to temperature error.

Large error could be introduced if the results were converted to an ozone-mixing ratio at fixed

pressure levels, as is needed for carrying out intercomparisons with instruments (such as SBUV)

that measure ozone on a pressure scale.

Aerosol Representation

Because of the location of the spectral channels on SAGE-II, the aerosol extinction values at
600 nm will be most sensitive to size distributions that are multimodal in nature. This would

affect the ozone retrieval up to about 20 to 25 km in altitude, depending on latitude and the

amount of volcanic dust in the stratosphere.

In the case of SAGE-I, this problem is much worse because there are fewer channels. The
only compensating factor is that the aerosol content of the atmosphere during SAGE-I lifetime

(pre-E1 Chich6n) was lower by a factor of 5 to 10 compared to SAGE-II measurements.

Horizontal lnhomogeneity

Since SAGE uses a solar occultation technique, measurements are performed at a solar zenith

angle of 90 °. Horizontal inhomogeneity on a scale of a few hundred kilometers becomes an
important issue for constituents exhibiting strong photochemical reactions. This will be true for

ozone above 50 km altitude during the sunrise and sunset measurement events. Other short-

term, transient events that can lead to horizontal inhomogeneity in the ozone distributions could

occur during sudden warming events. Similarly, cirrus clouds and Polar Stratospheric Clouds

(PSC's) are likely to be horizontally inhomogeneous.
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SAGE-I NO2

The assumption of constant NO 2 density below 27 km restricts the available NO2 information

to 30 km or above. The effect on the aerosol data at 450 nm is not great because of the large
differences in signal levels.

3.3.5.5 Error Analysis

The fundamental vertical resolution of SAGE is very high, as illustrated by the SAGE-II

averaging kernels in Figure 3.18. These are very close to ideal--i.e., unity at the nominal altitude

and zero elsewhere, from 20 km to 50 km. Below 20 km, the response to real changes in the
atmosphere is somewhat reduced and broadened. Above 50 km, the noise on an individual

profile is poor, so the vertical resolution has been deliberately reduced.
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For SAGE, the random error in the profile may be significant for trend estimation because it is

a solar occultation measurement, and there are a maximum of two measurements per orbit. An

estimate of this quantity, using only measurement error as sources of noise, is given in Figure

3.19. It is necessary to average more than 100 profiles for this source of error to become

unimportant at the level of accuracy required for trend estimation.

The forward model parameters that may lead to profile errors include the extinction co-
efficients, the NMC temperature profile, and the registration of the profile in altitude. There is no

opportunity for drift in radiometric calibration because a good zero and full-scale measurements

are obtained at every occultation (see Chapter 2). Extinction coefficient errors may lead to trends

in NO2 or aerosol being aliased into trends in ozone. Temperature profile errors will lead to

retrieval errors through both the Rayleigh correction and the temperature dependence of

absorption coefficients.

Sensitivity of the retrieved profile to altitude registration is shown in Figure 3.20. Typical

accuracy of the registration of SAGE-II is believed to be 100 m; it is not subject to long-term drift

errors (unless there is unaccounted drift in the spacecraft clock and tracking), and thus will not
contribute to trend estimation errors. The altitude registration accuracy for SAGE-! is believed to
be about 150 to 200 m.

Sensitivity to the temperature profile is shown in Figure 3.21. One curve is shown for

temperature at each of the standard levels from 300 mb to 0.4 mb. Above 20 km, the effect is very

small and would not contribute to ozone trend errors, even for large trends in the error of the

NMC temperature profile.

An error in the NO2 differential absorption coefficient could lead to an incorrect NO2

correction, and hence to an error in the O3, which depends on the NO2 amount. However, the

NO2 cross-section at 600 nm is only 5.5 percent of that at 448 nm, so this effect will be small.

5O

4O

v

UJ

D° 30

I.--
_J

2O

10
0 40

c"

_1 _l I

10 20 30

RANDOM ERROR (PERCENT)

Figure 3.19. Random error of a single SAGE-II

profile due to instrument noise only.

6O

5O

40 -

I-
T

i
LLI

-i- 30 -

20

10
-4( - 20 0

I

20 40

PERCENT/(km)

Figure 3.20. Sensitivity of the SAGE retrieval
, to altitude reference error.

153



ALGORITHMS

6O

5O

4O

_2
1-

30

2O

10
0.0

I
300

rj i j
250 200 30 10 5

i

0.2 1 .o

I Jl
150 100 70 50

I

Q4 0.6 0.8

PERCEN_,K

L
0.4

1 2 1.4

Figure 3.21. Sensitivity of the SAGE retrieval to atmospheric temperature errors. Curves are labeled with
the pressure level (mb) at which the NMC temperature is perturbed and are offset by multiples of 0.1%/K for
clarity.

3.3.5.6 Trend Estimation Assessment

SAGE-II data sampling is limited to 2 events per orbit, or 30 events per day. A latitudinal
sweep in coverage for each event (sunrise or sunset) from about 80°S to 80°N takes about 3 weeks.

The sampling frequency varies with latitude, with most sampling occurring at 80°N or 80°S, and

less in between. With such a low and irregular sampling rate, SAGE data cannot easily be used

for trend estimation, but can be used to assess the drift in other instruments, primarily the SBUV.
Once a statistically meaningful sample is obtained, the SAGE-II data can be used for investi-
gating trends.

The altitude range over which SAGE-II ozone data are relatively insensitive to other

perturbations (i.e., aerosol correction at low altitude and photochemical correction at high

altitude) is between 25 km and 50 km. Typical altitude resolution is about 1 km. The precision for

each ozone profile in this altitude range is about 10 percent, while the systematic error (primarily

the absorption cross-section uncertainty plus knowledge of the SAGE-II spectral filter response)
could be up to 8 percent.

Other trends that can alias into the ozone include aerosol and temperature trends. Aerosol

has been seen by the SAGE-II data processing team to alias into ozone in preliminary retrievals,

when the aerosol correction for the ozone channel was not done correctly. This aliasing was
evident in altitudes up to about 25 km at the low-latitude region from 1984 to 1985 because of

remnant from E1Chich6n. The effect of a temperature trend is probably not significant when the
SAGE-II ozone profile is restricted to altitudes below 50 km.

It is possible to estimate a trend from the difference between the SAGE-I and SAGE-II

climatologies (for example, see Chapter 5). The accuracy of this trend will depend on the

difference in systematic errors between the two instruments, the most important one probably

being the treatment of the altitude reference. A preliminary analysis shows that SAGE-I heights

may be around 90 m greater than those of SAGE-II, leading to a 2.5 percent error in the
SAGE-I/SAGE-II ozone difference at 50 kin.
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3.3.6 Solar Mesosphere Explorer UV Spectrometer

A data set from the SME UV Spectrometer (SME-UVS) for 1982 to 1985 has been archived

with NSSDC; however, it suffers from a drift in the sensitivity of the UVS, which leads to a drift in

altitude registration, and hence a false trend in ozone. This section refers to a reprocessing, the

results of which have been made available to the Ozone Trends Panel and will be placed in the
archive in the near future.

3.3.6.1 Forward Model

As described in Rusch et al. (1984), hereinafter referred to as the Basic Reference (BR), and in

Chapter 2 of this report, this experiment involved the measurement of the radiance of solar
ultraviolet radiation scattered by Earth's limb in two channels (265 and 296.4 nm) with a

half-width of approximately 1.5 nm. As the satellite spins, the radiances are measured for a series

of lines of sight that have tangent heights, at the limb, ranging from 0 to 100 km. The response
function for the measurement has a full width at half maximum of 3.5 km in the vertical. The

radiance measurements are sensitive to ozone density changes within the altitude range from

about 48 to 68 kin, varying somewhat with solar zenith angle.

The limb-viewing geometry is illustrated in Figure 2.33 in Chapter 2. The forward model (see

Equations (1), (2a), (2b), (2c) in BR) involves a numerical quadrature calculation of primary

Rayleigh scattering in a thin-shell, horizontally homogeneous, spherical atmosphere containing

absorbing ozone and scattering air molecules, but no aerosols. This is similar to SBUV and

Umkehr, but with a different geometry.

The ozone absorption cross-sections of Bass and Paur (I985) are convolved with the instru-

ment slit functions to obtain effective absorption cross-sections for each channel. The tempera-

ture effect is very small at 265 nm (.03%/°C) and small at 296.4 nm (0.1%/°C). The molecular-

scattering cross-sections of Penndorf (1957) and Bates (1984) were convolved with the instru-
ment slit functions to obtain effective cross-sections for each channel. The effects of aerosol

scattering and absorption by molecules other than ozone, resonance fluorescence, and scattering

by other atmospheric gases are omitted (see Section 3.3.3 on SBUV for a discussion of this effect).

The solar flux values measured in a separate experiment on SME (Rottman et al., 1982) were
used in the calculation of radiances. Absolute error of these fluxes is estimated to be + 10 percent,

with relative error of -+ 1 percent.

The MAP model atmosphere (Barnett and Corney, 1985) was used for the air density profile.

This model specifies monthly averages of temperature, pressure, and density as a function of
altitude; the algorithm uses a cubic spline fit to obtain data for any specific day, assuming the

monthly averages apply to the middle of the month.

As with any limb experiment, a critical phase of the data evaluation is the assignment of an

altitude or pressure to each measurement point in a scan. The following (updated) quotation

from BR (p. 11684) describes the procedure used in the UVS experiment.

The absolute direction of the line of sight of the scientific instruments is determined from an analysis of

averaged pitch angles derived from the four horizon sensor crossings each spin. This analysis leads to limb

altitude determinations with residuals of the order of 1 km at a slant distance of 2,550 km (Cowley and
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Lawrence, 1983). The limb altitudes are further refined by comparisons of the Rayleigh-scattered radiance

measured by the UVS with that calculated from modeling this signal using the relevant solar fluxes,

cross-sections, and the MAP model atmosphere. The normalization in altitude is done at 65 km in the long

wavelength chdnneI (296.4 nm), where no ozone absorption is detectable and the Rayleigh-scattering signal

is optical(t� thin.

Rusch advises that, in fact, one or two radiances above 65 km may be included in the

normalization procedure for improved accuracy. In a sense, this procedure could be considered a

direct measurement of the pressure at the tangent point.

The radiance quadrature is carried out over the field of view of the instrument by assuming

horizontal homogeneity and integrating in the vertical at 3.5 km intervals, using a four-point

Lagrangian interpolation. The variation of the instrument sensitivity over the FOV is included in
the quadrature. In addition, the polarization sensitivity of the long-wavelength channel is

applied in the radiance calculation for that channel. The short wavelength channel has no

measured polarization sensitivity (Figure 6 of BR). With the tilting of the FOV, the quadrature

becomes slightly more complex because the sum for each 3.5 km interval has a different weight,

depending on the amount of the tilt.

In preparing observed data for inversion, a minimum of five and a maximum of six radiance

profiles are averaged to ensure "adequate counting statistics." This is consistent with a latitude

resolution of about 5 °. In addition, there is an inherent "smearing" along the line of sight in the
limb technique.

3.3.6.2 The Inverse Method

The equations to be inverted are linearized in terms of a departure from a first-guess ozone

profile (Krueger and Minzner, 1976), computing radiances, and first-order partial derivatives of

radiance with respect to layer ozone density. Since the radiative transfer equation is nonlinear,

the problem is solved iteratively. The solution involves Twomey's (1963) minimum departure
from the first-guess profile.

We define the matrix of first order partial derivatives, K, by

ayf
(33)

where n refers to the iteration number, y;' is the calculated radiance at a wavelength and tangent
height indexed by i, and xj' is the ozone density at layer number j.

The solution is given by

x n = xn-I+(KTK+F) 1KT(yo6_-y_ l 1)+F(x°-x"-l) (34)

where K is calculated at x n x, Yoa_ is the measured radiance vector, Yc_F_ is the radiance

calculated using x n- 1, and F is a diagonal matrix with Twomey's smoothing vector on the
diagonal. The iterative procedure is terminated when the elements of the residual vector

(Yoa_.- Yc_l 1) are reduced below the measurement noise level. This conv.ergence criterion is not

strictly correct, but it will lead only to random errors and occasional failures to converge, and
does not matter for trends studies.
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The SME-UVS radiance measurements are sensitive to ozone density changes within the

approximate altitude range of 46 to 68 km. For tangent heights above about 68 km, there is
insufficient ozone to affect the measurement at 265 nm. For tangent heights below about 46 km,

296.4 nm photons received at the satellite have been scattered mostly from altitudes above the

tangent height; the radiances, therefore, contain no information about ozone at the tangent
height. The elements of the smoothing vector are set to zero in the central part of the good

information region and are increased sufficiently beyond the boundaries to ensure that the

first-guess profile is returned outside the good information range and to avoid instabilities in the
solution.

The algorithm solves for the mean ozone densities in 2 km layers centered at heights of 48, 50,
• . . 68 km. The lower altitude information limit for the 265 nm channel and the upper altitude

information limit for the 296.4 nm channel roughly coincide at about 58 km.

A second algorithm was developed to reduce the data taken after the beginning of 1987 because

fewer independent pieces of information were available in the measurements, as a result of the

poorer resolution with the spin axis tilting (we note that a similar end result could have been

achieved by an increase in the elements of the smoothing vector). In the new algorithm, both the

first-guess x°(z) and the iterated solution xn(z) are specified as the exponential of a polynomial

xn(z) = exp[a_ + a_2(z - Zo) + a_(z - Zo)2 + an4(z - Zo)3] (35)

where z is altitude, z0 = 48 km is a reference altitude, and a'd (n>O) are the unknown polynomial
coefficients to be determined at iteration n. As a first guess, a ° and a ° are taken to be zero. For

calculating the radiances and the partial derivatives, the profile is taken to be a linear com-
bination of the first guess and the solution profile on the last iteration.

x*n(z) = B(z)xn(z) + [1 - B(z)]x°(z) (36)

where B(z)= 1 for 48<z<69 and tends to zero smoothly outside this range. The procedure is

exactly as before but with all elements of the smoothing vector set to zero

oxZ
K_

3a;' + 3x: Oaf
(37)

T -1 T n 1)a"= a n 1 + [K K] K (Yo_s + Ycal (38)

and the iteration procedure is stopped using the same criterion as before. This is an ordinary

least-squares solution.

3.3.6.3 Forward Model Assessment

Single Scattering Approximation

The worst case error in calculated radiances is probably less than 1 percent due to neglect of

multiple scattering. The quadrature error in this calculation does not appear to have been directly
assessed in the BR.
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Neglect of Refraction

This is negligible at these altitudes.

Ozone Cross-Sections

Experimenters estimate the uncertainty at 5 percent, although, at these wavelengths, the

error is likely to be less than 3 percent. Bass and Paur (1985) estimate their measurement error to

be less than 1 percent. However, their measurements are relative to that of Hearn (1961) at 253.7
nm, which is believed to be within 2-3 percent (Hudson, private communication).

Rayleigh Scattering Cross-Sections

Bates (1984) estimates that his values are within 1 percent.

Omission of Aerosols

Polar mesospheric clouds produce obvious anomalous effects; these cases are discarded in

the data evaluation. The possible effects of background mesospheric aerosols at heights at and
above 48 km are difficult to assess. There are no measurements of particle size distribution at

these levels, and the presence of aerosols is very difficult to detect. If such background aerosols

do exist, they are likely to be variable; derived ozone densities may be too low and exhibit

spurious variability. Aerosols have been detected at altitudes below 48 km (Clancy, 1986). Such

aerosols could affect results by increasing the small multiple-scattering error.

Other Scattering Mechanisms

Resonant and Raman scattering and scattering by other atmospheric gases have not been
included in the forward model; see Section 3.3.3.3 for a discussion of this effect.

3.3.6.4 Inverse Method Assessment

This assessment refers primarily to the original algorithm.

The first-guess profile is the Krueger-Minzner (1976) midlatitude Northern Hemisphere

profile. The choice of first guess should not affect the retrieved profile within the validity range of

altitude of the experiment. However, this is not specifically stated by the experimenters.

The customary Sx and S, covariance matrices are not used explicitly in the inversion

procedure, although their implied general characteristics may be inferred from the smoothing

vector elements. The smoothing vector is designed empirically to retrieve the first-guess profile
outside the information range and the true profile (within error bounds) within the information

range, and to have a smooth transition in between.

3.3.6.5 Error Analysis

The SME-UVS team has not been able to provide the standard diagnostics at the time of

writing this chapter; therefore, we summarise here the analysis of random and systematic errors

in the retrieved profiles from the BR. We have not confirmed this analysis.
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Random errors include photon counting errors (noise), data compression before trans-

mission to ground, real atmosphere differences from the model atmosphere, and errors arising

from altitude-radiance normalization. In the analysis, the first two and last two of these are

considered together. The first two combined produce errors in the retrieved profiles ranging
from about 3 percent at 48 km to about 10 percent at 68 kin, while the second two combined

produce 4 and 10 percent at the lower and upper levels, respectively. When all four are

combined, the total random error ranges from about 6 percent at 48 km to about 14 percent at 68

km (See BR Table 2 and Figure 10a).

The systematic errors include absolute instrument calibration (but solar flux error has not

been included here), measurement of instrument polarization, measurement of PMT dead time,

and ozone cross-section. The first of these, assumed to be 10 percent for instrument calibration,

produces the dominating systematic error component of about 17 percent from 50 to 62 km,

decreasing somewhat above and below this range. Since solar flux instrument calibration error

was not included, this result really applies to the (radiance-irradiance) ratio. This error results

from the dependence of the reference density level, nominally at 65 kin, on the instrument gain.
If the true gain is larger than that given by the calibration (positive error), the scattered L2W"

radiance calculated for the reference level in the model atmosphere will be sensed from a lower

density level (higher altitude). Because ozone density decreases more rapidly with height than

atmospheric density, the ozone error is larger than the calibration error, as well as being of

opposite sign. When the remaining error components are included, assuming no correlation

between the different error types, the total systematic error is just over 18 percent from 50 to 62

km (see BR, Table 3, Figure 10b, and Chapter 2).

3.3.6.6 Implications for Trend Estimation

Trend estimation will be compromised by the total relative in-flight drift of UVS and Solar

Flux instrument calibrations (PMT sensitivity and dead-time constant). In each case, this

includes any relative drift of calibration between the two wavelength channels. A + 1 percent per

year drift in the (radiance-irradiance) ratio will produce a fictitious ozone trend of - 1.7 percent

per year.

Real trends in atmospheric temperature within the 48--68 km altitude range will produce only

small effects in this range through the absorption cross-section temperature dependence in the

296.4 nm channel ( + I°C per year produces + 0.1 percent per year fictitious ozone trend). A more

important contribution may arise through temperature changes at any altitude below 68 kin, as

this affects the pressure-height relationship through the hydrostatic equation. It would then be

possible for derived ozone densities to be assigned to the wrong altitude. A symptom of this
effect could be a drift in the radiance-height matchup at 65 km. This symptom, however, would

apply also to a net relative calibration drift as described above. Monitoring this matchup could be

a good first-order diagnostic of possible problems.

A change in background mesospheric aerosol may introduce a fictitious ozone trend of a sign

that depends on optical properties. We assume that obvious cases of polar mesospheric clouds

are correctly detected, then rejected from processing.

3.3.7 Solar Mesospheric Explorer Near Infrared Spectrometer

The Solar Mesospheric Explorer Near Infrared Spectrometer (SME-NIRS) measures infrared

limb emission by excited oxygen (O2(l&g)) at 1.27/zm--the result of photodissociation of ozone
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by ultraviolet radiation and subsequent photochemical reactions. The analysis of the data is

complicated by the fact that some of the O2(1Ag) molecules are quenched by collisions with the

major atmospheric molecules, and that the other product of the photodissociation of ozone,
O(1D), can produce O2(1Ag) indirectly by collision with molecular oxygen.

The SME-NIRS data set for 1982-1985 has been archived with the NSSDC. However, this

data set suffers from a drift in the sensitivity of the SME-UV spectrometer, which leads to a drift

in altitude registration, and hence a false trend in ozone. The data are being reprocessed with

better values for the altitude registration and will be placed in the archive in the near future. The
description below applies to both data sets.

3.3.7.1 Forward Model

The complete forward model has been described by Thomas et al. (1984) and will not be

reproduced here in detail. It is assumed that the only reactions that occur are

03 + hv(210<k<310nm) ---> 02(IA_) + O(1D) eJa
02(]Ag) + 02 ---> 202 kD

O(1D) + 02 --> O(3p) + 02(lY0 k o

O(1D) + N2 --_ O(3P) + N2 ky

02 + hv(_, = 762nm) --> 02(1Z) Jr

O2(12) 4- M --> O2(1Ag) + M ks

(39)

It should be noted that the J's are altitude dependent due to absorption of incoming solar

radiation, and that the k's may be temperature and, therefore, altitude dependent. By solving the
kinetic equations associated with these reactions, it can be shown that the volume emission rate

V at an altitude h is given by

{ Psks[M] } A DV(h) = As + ks[M] + eJ3[03] AD 4- kD[O 2] (40)

where As and A D are the spontaneous emission coefficients for the O2(1Y) and O2(1Ag) levels,
respectively, and the O2(1E) production rate Ps is given by

kO[02]

P_= Js[02] + _J3[O3] ko[02] + kN[N2] (41)

Thus, the volume emission rate is a linear function of J3[O3]. The observed slant intensity for
tangent height ho is related to the volume emission rate by an integral along the line of sight

_c

S(ho)= W(O-Oo)fo v( ,o)v( ,o)dldo (42)

where 0is scan angle, W(O) is the FOV profile, and T(I) is the transmittance along the line of sight

from the emission at position l to the instrument, accounting for absorption by the 02 ground-
state molecules.

3.3.7.2 The Inverse Method

In preparing observed data for inversion, the good profiles are averaged together in sets of

six. This merging reduces the latitude resolution to about 5°.
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The instrument's line of sight is determined by relating the Rayleigh-scattered radiance near

70 km, measured by the SME-UV spectrometer, to that calculated from a model atmosphere,

thus relating the altitude scale to a pressure reference. In the long term, the ultraviolet spec-
trometer sensitivity is tied to that of the visible spectrometer (see Chapter 2). Any degradation of

the visible spectrometer will therefore be manifested as an altitude error. The inverse method is

carried out in two parts. First, the observed line-of-sight radiances are inverted to yield volume
emission rates as a function of altitude. Second, the volume emission rates are reduced to ozone

profiles using the MAP model atmospheric temperature and pressure distribution (Barnett and

Corney, 1985) and the assumed photochemistry.

The present inversion scheme uses a constrained linear matrix equation to solve for the

volume emission rates. The constraint weighting for each layer is obtained from an empirical

relation chosen to give a stable solution with the least possible constraint. It should be noted that

the present scheme differs from the onion-peel approach described by Thomas et al. (1984).

The volume emission rate V(h) is represented by a four-point Lagrangian interpolation

between values at a set of levels spaced at 3.5 km intervals, expressed as a vector v. The integral

in Equation 42 for the line of sight radiance becomes a matrix product of the form I = Fv, where F

depends on W and f. This equation is solved for v by least squares with the smoothing constraint
that the vertical derivative of V(h) is close to an average volume emission rate vertical derivative,

Av, by minimising

[I - Fvl 2 + w 2] _- Dvl 2 (43)

where D is a matrix operator expressing vertical differentiation. The empirically determined

weight w determines the relative importance of the smoothness constraint, increasing with _,
the absolute value of the slit tilt angle

w(a) - (1 + tanh(b(a/a - a/a))) (44)

The constants a, b, and e were chosen to give a stable solution with minimum constraint. Note

that no constraint is placed on the value of the volume emission rate itself, only on its derivative.

The ozone profile is then derived from the volume emission rate according to Equations 40

and 41, using the assumed photochemistry and the climatological atmospheric temperature

profile. This is not linear in Oa, as Ja depends on the ozone above h, but it is straightforward.

3.3.7.3 Forward Model Assessment

The relationship between the measured quantity and the ozone profile is complicated; it

depends on a complete understanding of the photochemistry involved. It is always possible that

some significant constituent or reaction has not been considered, although we are not aware of

any. The rate constants used in the SME analysis appear sound, but there are some concerns that
can be raised.

O2(1Ag) Formation in the 0 3 Photolysis

Not all of the photodissociation of 03 leads to the production of O2(lAg). The ratio used by
SME is 0.9, based on the work of Fairchild et al. (1978). This ratio was not measured by observing
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the O2(1kg) emission, but by measuring the production of the O(1D) atom. There is some

evidence that this may not give the same answer (Valentini et al., 1987). However, no ex-

planation of the discrepancy has yet been given.

03 Photolysis Rate

The rate of 8 × 10 -3 mols/sec given in Thomas et al. (1984) is a misprint. It should read 9 × 10 -3

mols/sec, in agreement with other derivations.

Quenching of O(1D)

The rates given in Thomas et al. (1984) for the quenching of O(_D) by N2 and 02 have the

wrong temperature dependence, according to the original reference (Streit et al., 1976). The
forward model also does not include the fact that not all quenching of O(ID) by 02 leads to the

production of O2(1E); some of the reactions lead to a ground-state molecule. Harris and Adams

(1983) give a branching ratio for the production of O2(1E) of 0.77 + 0.2. This branching ratio was
obtained at room temperature, but it could be temperature dependent, and therefore different at

mesospheric temperatures.

To test the sensitivity to temperature dependence, the correct temperature dependence has

been put in the inversion; a 6 percent decrease in ozone resulted in most of the region. Adjusting

the rates and adding the branching ratio was not done but would cause a small (- 3 percent)
increase in ozone.

Quenching of O2(1Ag) by 02

The value chosen for the forward model for the quenching rate of O2(1Ag) by 0 2 is that of
Findlay and Snelling (1971). Wayne (1985) recently reviewed the measurements for this reaction.

His preferred room temperature value for the rate is 1.56 x 10 -18 compared with 2.22 × 10 -18

used by SME. The temperature dependence of the reaction has been measured by Findlay and

Snelling over a limited temperature range (285-322K), all above mesospheric temperatures.

Thus, the values used by SME are from an extrapolation outside the measurement range. A

decrease in quenching results in a corresponding decrease in the ozone by the same amount; this
change would give a significant decrease (30 percent) in ozone.

Quenching of O2(1E)

The error bars assigned by SME to the quenching rate of the O2(1E) by N2 seem too large.

Wayne (1985) recommends a value of 2.2 x 10 -Is, which is close to the value of 2.0 x 10 -15used by
SME.

m

3.3.7.4 Inverse Method Assessment

We have found no significant problems with the inverse method that might lead to errors in
trend analyses based on SME-NIRS data. The only minor point is the use of a rather ad hoc

constraint, which might be too loose or too tight. The averaging kernels in Figure 3.22a indicate
that the constraint is probably too loose for single-profile retrievals at 0 = 0.
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3.3.7.5 Error Analysis

The averaging kernels for the ozone mixing ratio on a pressure scale are shown in Figure
3.22a-c for three values of the slit tilt, 0, and for a set of levels spaced at intervals of 0.5 in loglop.

The resolution is comparable with the FOV width (3.5 kin) for 0 = 0, about 5 km at 0 = 10 °, and

about 10 km at 0 --25 °. We note that the resolution varies only slightly with altitude. There are

significant negative excursions in all cases, although for 0 = 0° they lie close to the main peak and

may not be significant for trend estimation. For higher altitudes at 0 = 25 ° (above about 0.005 mb),

the negative excursions are serious; these data should not be used for trend studies.

Sensitivities to the forward model parameters are shown in Figures 3.23 and 3.24. The

primary sources of random error are detector noise, digitization errors, and variations of the

atmospheric temperature. Systematic errors include errors in the rates, cross-sections, the
chemical reaction scheme, errors in the temperature climatology, and instrument calibration

errors. Of these, the quantities that may be subject to trend errors are atmospheric temperature,

altitude reference, and calibration (gain). The solar input eJ3= will vary slightly with solar cycle,

but with insignificant effect.
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3.3.7.6 Trend Estimation Assessment

The SME-NIRS method is somewhat indirect, relying on a complete understanding of the

relevant ozone photochemistry, including its temperature dependence. We have found no

significant errors in the photochemistry, but it is always possible that some reactions have been
omitted or misunderstood.

The SME-NIRS should be capable of measuring trends from around 50 km to around 90 km
with a vertical resolution of about 4 km at the start of the mission, and then 10 km at the end, as a

result of slit tilt. The averaging kernels at zero slit tilt are rather oscillatory and could be

improved.

Drift in the retrieval caused by drift (around _+0.18 km/year) in the reference altitude will be

small at 1 mb, rising to about 4 percent per year at 0.05 mb. This is the largest source of

uncertainty.
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Changing instrument calibration (< 1%/yr) may lead to drifts of a similar magnitude in ozone.

Drift caused by real temperature changes, relative to the climatology used, would have to be

3-SK/yr to explain the + 1.6%/yr change seen by the SME-NIRS measurements. Real tempera-
ture changes are likely to be rather less than this.

3.3.8 The Limb Infrared Monitor of the Stratosphere

The Limb Infrared Monitor of the Stratosphere (LIMS) experiment was launched on the

Nimbus-7 spacecraft in October 1978, and produced data until May 1979. It measured con-

centrations of ozone and other gases in the stratosphere by measuring the limb-emitted radiation

in selected spectral regions in the infrared (Gille and Russell, 1984). The spectral region covered

by the LIMS radiometer ranged from 6 to 16 _m wavelength. Ozone measurements were

obtained from the spectral channel centered at 9.6 I_m. Two CO2 channels, one wideband and
one narrowband, centered at the 15 I_m, were used to generate stratospheric temperature
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profiles. The temperature profiles were then used in the reduction of data from all the other
channels for the calculation of the Planck function term.

The LIMS radiometer scanned vertically at a rate of 0.25 ° per second. The data were sampled
at a rate of one per 24 msec and digitized with a 12-bit A-to-D converter. The vertical instrument

FOV for the ozone channel was 1.8 km when projected to the atmosphere at the tangent point
location.

This discussion applies to the LIMS Version 5 algorithm, the results of which have been
archived with NSSDC.

3.3.8.1 Forward Model

The limb radiance I(h) measured by the LIMS instrument at a fixed tangent height h is given
by (Gille and Russell, 1984)

(45)

whereB(v,O) is the Planck function at wavenumber rand temperature ®, I is distance along the

line of sight, T is the infrared transmittance between l and the spacecraft, 4}(v) is the instrument

spectral response function, and W(h-z) is the instrument field of view (IFOV) function.

The forward model for LIMS data retrieval is a numerical integration of Equation 45.

Radiances are computed appropriate to the LIMS measurement geometry, at 1.5 km intervals
(the same altitude interval as the homogeneous shell thickness used in the inversion). The

Planck function is calculated from the temperature profile retrieved from the LIMS's two CO2

channels (Gille et ai., 1984a). The atmosphere is assumed to be in local thermodynamic

equilibrium.

Limb path transmittance values are calculated with the emissivity growth approximation
(EGA) scheme (Gordley and Russell, 1981). The most up-to-date line parameters for the ozone

9.6 gm band were used in the calculation of transmittance tabulation. The isotope line param-
eters of Drayson et al. (1984) were also included. No interfering species were included. The

calculated I(h) was smoothed with a Gaussian filter of width 1.1 km, to match the precondition-

ing applied to the measured radiances.

3.3.8.2 The Inverse Method

Preconditioning of the Radiances

The radiances subject to inversion were obtained from the radiometer measurements

through a series of steps, the most important of which are discussed below.

The radiometer measurements were calibrated using the preflight data on the linearity of the

radiometer and the black body source as described in Chapter 2. A correction for spacecraft

rotation during the scan is inferred from a pair of up and down scans. The correction results in an

effective change of the scan rate. Data are discarded if the required correction is larger than 4

percent of the nominal scan rate.

=

=
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The radiance scan, with samples nominally every 0.375 kin, were Fourier transformed and

multiplied by the inverse transform of the IFOV and electronic filter. Thus, a correction for the

effect of the IFOV sidelobes and the amplitude and phase rates of the electronic filter was applied

in the frequency domain. In addition, the measurements in the different channels were co-

aligned by this process; high frequencies were removed with a Gaussian apodization filter.

These steps are described in Gille and Russell (1984) and Bailey and Gille (1986), although the

details of the apodization in this paper differ slightly from that applied to the archived data.

The final filtered radiances were sampled at 1.5 km intervals for input into the inversion

procedure.

The Inversion Procedure

The inversion procedure is basically an onion-peeling approach in which the solution profile

is sought from the top to lower layers. In each layer, the solution is updated in an iterative

manner, as described by Russell and Drayson (1972) and Bailey and Gille (1986). The radiances

are compared to the calculated forward radiances at each layer. The first-guess solution for the

top level is from the solution obtained from the previous scan, while for the lower levels, the

first-guess solution is always from the previous higher level. During the iteration cycle, the

solution at a particular level is updated with a partial derivative computed from the previous

iteration. The convergence criterion for each level is that the relative difference between the

filtered and the synthetic radiances is less than 0.1 percent.

The inversion procedure does not explicitly use a priori information, except for the smooth-

ing implied by the preconditioning described above and a zero vertical derivative in ozone above
the topmost level.

3.3.8.3 Forward Model Assessment

Ozone Line Parameters

The ozone 9.6/zm band strength is known to better than 8 percent. However, there are a large
number of weak lines within the band with less accurate line parameters. Because of the limb

geometry, the uncertainty of the calculated transmittance values due to line parameter errors is

about 8 to 10 percent for altitudes above the ozone peak, increasing to 15 to 20 percent for

altitudes below the ozone peak, due to the significant contributions from the less well-known
weak lines (Drayson et al. 1984). However, emission errors can be larger when this effect is

coupled with a steep positive lapse rate and optically thick paths, as in the equatorial lower

stratosphere.

Transmittance

The accuracy of the emissivity growth approximation for calculating the limb transmittance is

generally within a few percent, and the errors are smaller for weak and strong absorption.

Temperature

The error in the temperature values used is less than 2K, based on the retrieval of the two 15
_m CO2 channels (Gille et al. 1984a). The inclusion of horizontal temperature gradient correction

in calculating the limb transmittance is important.
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Horizontal Gradients

Roewe et al. (1982) showed that horizontal gradients along the line of sight could have a large

effect on the outgoing radiance at altitudes for which the optical depth from space to the tangent
point along the limb viewing path is of order 1 or more. This paper further showed that gradients

in trace constituents concentrations had a considerably smaller effect than temperature gradi-

ents. The LIMS forward radiance model allowed a first approximation to the horizontal tempera-
ture gradient to be used to lead to improved temperature and constituent retrievals.

Local Thermodynamic Equilibrium (LTE)

The model assumes that CO2 and 0 3 are in LTE; that is, their energy levels are populated

according to a Boltzmann distribution, so that the source function is given by the Planck

function. On theoretical grounds (Houghton, 1969), and from ATMOS observations (Mug-

geridge, private communication), there appears to be no reason to question this for the 15 _tm

bands of CO2 at altitudes below 80 km that materially affect LIMS radiances. However, O3 may

be photochemically formed in a vibrationally excited state, with several excess 9.6 #m quanta.
This energy can be removed through quenching or radiation. Solomon et al. (1986b) have

suggested that quenching is sufficiently slow that the source function is significantly greater than

the LTE value above 0.5 mb. The various rates for these processes are uncertain, so the
quantitative size of this effect is not precisely known. However, the calculations of Solomon et al.

indicate that LIMS ozone is around 30 percent too large at 0.1 mb.

3.3.8.4 Inverse Method Assessment

The inversion procedure does not require a first-guessed profile; thus, the solutions are not
biased to some a priori profile.

No noise covariance matrices are used in the inversion procedure. The solutions are derived

exactly from the measured radiances, thus propagating any measurement error directly into the
retrieved solution.

Retrieval Errors

A detailed error analysis on the LIMS ozone retrieval was performed through model
simulations and retrievals (Remsberg et al., 1984). Table 2 in the referenced paper summarized

the various error components and their magnitudes. The two dominating factors in the LIMS

ozone retrieval uncertainty are the temperature uncertainty and the ozone line parameters

uncertainty, which can (conservatively) produce retrieved ozone mixing ratio errors as high as
10--30 percent and 8-15 percent, respectively. The total retrieved ozone upper limit uncertainties

were estimated to be 15 percent between 5 and 1 mb, and to increase to 40 percent at 100 mb and
0.1 mb.

Aerosols, PSC's, and high-altitude cloud interference should, in principle, affect LIMS data

only at the height of the atmospheric perturbation. Most of these occurrences are removed by
identifying their signatures in the moderately transparent ozone channel. The corrections in the

frequency domain for sidelobe effects should remove the effects of high, cold, tropospheric

clouds, but a small residual effect may be present. Volcanic aerosols were particularly low during
the LIMS obseB, ing period.
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3.3.8.5 Error Analysis

For LIMS, the state vector x is the ozone mixing ratio at levels spaced every 1.5 km on a grid

for which the temperatures and pressures are known from the temperature-pressure retrieval.

Correspondingly, the measurement vector y has as elements the emitted radiances on the same

grid, smoothed and filtered as described above.

Averaging kernels for several altitudes are shown in Figure 3.25. The full width at half
maximum is about 2.5 kin.

Sensitivity to temperature errors at individual levels is shown in Figure 3.26. Figure 3.27

illustrates the total effect ofa 1K temperature error at all levels, where the signs are opposite; i.e.,

a temperature that is low will result in a high ozone concentration. The temperature channels are

used to derive a registration pressure; the effect of a 1 percent error in this quantity is also shown.

Finally, the effect of a 1 percent calibration error is given. It should be emphasised that the error

cases are somewhat simplified in that a calibration error probably would affect the temperature

(and pressure) channels as well, and some cancellation of errors would result. The temperature
and pressure errors here should be thought of as those that are not due to calibration errors and,

because this relationship is not included, are illustrative rather than exact.

3.3.8.6 Trend Estimation Assessment

Trend estimation from the LIMS measurements will not be discussed here because of the

short lifetime of LIMS operation (operated from October 1978 to May 1979), and because the

retrieval algorithm is tailored to handle the particular engineering problems of LIMS, such as the
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IFOV sidelobe problem, compounded with the spacecraft attitude uncertainty. As with most

other measurement schemes, ozone trends sensed with a LIMS-type instrument would be

susceptible to problems of instrument degradation; these can, in principle, be corrected for by

in-flight calibration. However, for the LIMS type of measurement, temperature sensitivity is its

biggest drawback since the source function and the species line parameters are dependent on the

exact value of the atmospheric temperature. Thus, an undetected or wrongly retrieved tempera-
ture drift would lead to an erroneous ozone trend.

3.4 ALTERNATIVE STRATEGIES FOR OZONE PROFILE TREND DETECTION

The traditional method for looking for trends in remotely sensed ozone profiles has been the

direct statistical analysis of the retrieved profiles on a layer-by-layer basis (e.g., see Reinsel et al.,

1984). The retrieval methods generally have been designed to give the best results for individual

profiles and may not produce optimal results for trend studies as a result of the relative weight

given to a priori and measurement, for example.

In this section, we discuss possible alternative approaches for the detection of trends in ozone

profiles. These include methods that involve the statistical analysis of the actual physical

measurements, without direct recourse to a retrieval algorithm, and methods involving re-
trieval, but designed to retrieve trend profiles.

3.4.1 Analysis of Directly Measured Quantities

3.4.1.1 SBUV and Umkehr Measurements

We have examined the signature, in measurement space, of the postulated CFM ozone

depletion centered near 40 kin. Figure 3.28 shows the SBUV spectral signature, in terms of
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Figure 3.28. SBUV spectral signature for a Gaussian ozone depletion of 10 percent centered at 3 mb, with a
width of 10 km at half maximum.
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percentage albedo change, for a Gaussian shape percentage depletion centered at 3 mb, with a

peak depletion of 10 percent and a width of 10 km at half maximum. This is a distinctive signature

that is unlikely to be produced by either a wavelength-dependent drift in the reflectivity of the
SBUV diffuser plate or by a small drift in the wavelength calibration (see Chapter 2). Since the

overall shape of the SBUV spectral albedo curve depends on such factors as total ozone, season,

latitude, solar zenith angle, and the multiple scattering and reflectivity "correction" to the

observations, the analysis is not trivial. Moreover, the spectral signature of the profile depletion

will also be somewhat dependent on these same factors. Finally, it would be necessary to

distinguish between the spectral signature of this depletion and the stratospheric aerosols

(Figure 3.2). Fortunately, this particular aerosol signature has a much narrower peak than the
depletion signature. It is beyond the scope of this section to explore this potential method in full

detail. However, it is evident that a good place to start would be with the initial preinversion,

forcing residuals of the present SBUV algorithm, since the factors listed above are already largely
removed from these residuals.

The curves joining the smaIl squares in Figure 3.29 illustrate the Umkehr measurement-space
signature of a similar Gaussian shape percentage depletion with, however, a maximum de-

pletion of 25 percent and a half-width of about 14 kin. Unfortunately, this signature is very

similar to the stratospheric aerosol signature given by the curves joining the small triangles.
Figure 3.29a is for a stratospheric aerosol optical depth of 0.0348, and for midlatitude ozone

profiles with 200 matm-cm total ozone. The aerosol curve is taken from the data of Dave et al.,

1979. Figures 3.29b and c show similar curves for midlatitude ozone profiles with total ozone of

300 and 400 matm-cm, respectively. For both the depletion and haze signature curves, the width

of the signature increases and the amplitude decreases (only very slightly in the case of the

depletion signatures) as the total ozone increases. It follows that any attempt to use this

signature technique for the trend analysis of the Umkehr observations must deal appropriately
with the problem of stratospheric aerosol contamination of the measurements, when such
contamination exists.

With respect to calibration problems with the Dobson instrument, this alternative method

appears to offer no particular advantage over the traditional method, because a wedge cal-
ibration error might very well have a signature similar to those in Figure 3.29.

In summary, this trend approach may offer some advantage when applied to SBUV data, but

appears to offer little if any advantage with the Umkehr data. Only the broad, 40 km depletion

has been examined here because other features of model-predicted ozone changes will be more
difficult to find with either SBUV or Umkehr data.

3.4.1.2 SME-NIRS

An alternate method of obtaining ozone trends from the NIRS experiment on SME is to

examine the airglow layer itself. This layer, which has a peak near 1 mb, is approximately a

Chapman layer following the absorption of ultraviolet solar radiation. The radiance at the peak is

primarily a function of the ozone density profile. With all other conditions being constant,

long-term trends in its intensity would indicate ozone trends. The other parameters that

influence the airglow peak intensity, and hence the peak radiance observed from the spacecraft,
are solar zenith angle, tilt angle, and the ozone distribution. With a simple model, effects of solar

zenith angle and tilt angle can be accounted for. Although a long-term change in the ozone

distribution would be seen as a trend, it is, of course, an ozone trend--that is, there may be some

ambiguity about the exact nature of the observed ozone trend. A remaining uncertainty is any
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change in the sensitivity that has been measured by the inflight calibration. This method

removes the largest source of uncertainty in SME-NIRS ozone, the altitude determination.

3.4.2 Trend Retrieval

Some of the observing systems use "optimal" retrieval methods. These are methods that
attempt to minimise the error terms in the error analysis described in Section 3.2 on the basis of

assumptions about the statistical behaviour of the instrument noise and the atmospheric profile.
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Figure 3.29. Umkehr measurement signature for a Gaussian-shaped depletion with a maximum of 25
percent and a half width of about 14 km centered at 3 mb (squares). Stratospheric aerosol signature
(triangles). (a) Total ozone 200 DU. (b) Total ozone 300 DU. (c) Total ozone 400 DU.
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These methods are usually designed to give optimal results for single profiles; consequently,

they do not necessarily give optimal estimates when the retrieved profiles are used for long-term

means or trend analysis. The user must be aware of the nature of optimal retrievals when
carrying out statistical analyses.

Qualitatively, the optimal retrieval is a weighted mean of the true profile and an a priori

profile, with the weighting depending on the measurement error

:_ = Ax + (I - A)x" (46)

If the measurement error can be reduced, for example, by averaging, then the weighting
should lean more toward the true profile and less toward the a priori.

The quoted error on a profile may include components from the error in x a as well as those

due to experimental error. Only the latter varies from one profile to the next.

It should be possible, in principle, to retrieve trends over a greater height range and with
better resolution than that obtainable from individual retrievals because random errors in the

data are reduced by averaging. This is straightforward in the case of linear forward models

because the measurements can be averaged directly to remove noise. In the nonlinear case, it is

more difficult; further research is needed to set up a sound basis for trend retrieval.

We note that, as random errors are reduced, systematic errors with trends become more
important and need more careful treatment.

3.5 SUMMARY AND CONCLUSIONS

We have found no serious deficiencies in the algorithms used in generating the major
available ozone data sets. As the measurements are all indirect in some way, and the retrieved

profiles have different characteristics, data from different instruments are not directly com-
parable. Thus, the primary aim of this chapter has been to characterise the algorithms to show
quantitatively:

• How the retrieved vertical profile is related to the actual profile. This characterises the
vertical resolution and altitude range of the data.

• How trends in the real ozone are reflected in trends in the retrieved-ozone profile.

• How trends in other quantities, both instrumental and atmospheric, might appear as trends
in the ozone profile.

3.5.1. Error Analysis Concepts

Error analyses for the ozone data sets that we have considered have, in general, been

published in the open literature, but not in a uniform and comparable way. We have, therefore,

defined a uniform error analysis approach and applied it to all of the data sources. The formal

error analysis shows that the retrieved vertical profile 2(z) can be expressed as an explicit function

of the true profile x(z), plus error terms due to instrument noise and systematic errors. This
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function can be thought of as a smoothing of the true profile with a smoothing function we call

the averaging kernel A(z, z'):

2(z) + fA(z, z')(x(z') + error terms (47)

The range of height z over which the averaging kernel has a well-defined peak determines the

height range of validity of the retrieved profile, while the width of the peak defines the vertical

resolution of the profile. The error terms due to various sources can be examined independently.

Those leading to constant offsets, or purely random errors, are of minor importance when

studying trends, as random errors will average out in the long run and constant offsets make no
difference to trend estimates. The most important sources of error are those that have trends

themselves, which might appear as false trends in ozone.

The range of validity and vertical resolution of the ozone data sets that have been available to

the Ozone Trends Panel are given in Table 3.6. Also listed are the primary sources of systematic

error that may introduce incorrect trends into the retrieved data.

Table 3.6 Summary of Retrieval Characteristics

Instrument Altitude Range* Resolution Sources of Trend Error
mb km km

SBUV 16-1 (28-50) 8-10

Umkehr 64-2 (19-43) 11-14

SAGE-I (250-1) 10-50 1

SAGE-II (250-1) 10-50 1

(1-0.1) 50-65 5
SAGE-II/-I (250-1) 10-50 1

SME-UVSt (1-0.05) 48-68 4

SME-NIRS 0.3-0.003 (55-85) 4-10{

LIMS 100-0.1 (15-64) 2.5

Diffuser plate reflectivity, aerosol.

Aerosol, sampling.

Aerosol below 25 km, sampling.

Aerosol below 25 km, sampling.

Altitude reference, filter placement.
UVS and Solar Flux instrument calibration,

pressure at 68 kin, mesospheric aerosol?

Altitude reference, calibration, atmospheric

temperature.
(short record)

*Brackets indicate approximate equivalent

-tExperimenters assessment.

{Varying with time

3.5.2 Individual Data Sources

3.5.2.1 Dobson Total Ozone

The only algorithmic source of trend error is the omission of the effects of SO2, which itself

has a trend. Stratospheric aerosol, which has variability on a long time scale, is also omitted.

3.5.2.2 TOMS and SBUV Total Ozone

The primary source of error here is the spectral variation of the drift in diffuser plate

reflectivity. The range of reasonable models of this drift presented in the calibration chapter leads

to a possible overestimate of around 3-4 percent in the ozone depletion over the 8-year data

period. A minor source of trend error is an underassessment of tropospheric ozone by a factor of
about two.
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3.5.2.3 SBUV

Although the archival data cover Umkehr layers 1 to 12 (altitude range approximately 0-64

km), we find that only layers 6 to 9 or 10 (28-50 km) are suitable for trend analysis. The sensitivity
of the retrieval to diffuser plate reflectivity errors has a similar vertical profile to the global trend

seen in SBUV Version 5 data. Uncertainty in this trend due to errors in the diffuser plate
reflectivity within experimental error is comparable with the trend itself.

3.5.2.4 Umkehr

The archival data cover an altitude range of layers 1 to 9 (0-48 km). We find that only layers 4

to 8 (19--43 km) are suitable for trend analysis. There are many sources of systematic error that

affect an individual instrument in a way that varies with time, such as recalibration and operator

competence. The network is not large enough to rely on these effects averaging out in the long
run. We note also that aerosol effects and temperature dependence are not allowed for in the
retrieval.

3.5.2.5 SAGE

SAGE has an excellent vertical resolution, but a poor sampling frequency. This means that

care must be taken in deriving statistically valid trends. We have found no problems that might

lead to trend errors when using data from one instrument, other than its sensitivity to aerosols
below about 25 km. When comparing SAGE-I with SAGE-II, it must be remembered that the

systematic errors in the two data sets are likely to be different. Specifically, the different

treatment of the reference altitude can lead to a systematic difference increasing with height;

errors in filter placement can lead to scale errors, differing between the two instruments. It
should also be noted that, as SAGE measures on a height scale, while SBUV measures on a

pressure scale, temperature trends must be correctly modeled when comparing trends from
these two instruments.

3.5.2.6 SME

The vertical resolution of the retrieval from both the UVS and the NIRS degraded with time as

the attitude of the spacecraft changed. The primary source of trend errors for both instruments is

the altitude reference. The NIRS retrieval relies on a complete understanding of the relevant

photochemistry, including its temperature dependence. We have found no errors, but it is quite
possible that some chemistry has been omitted or misunderstood.

3.5.2.7 LIMS

We have found no significant sensitivities that might influence trend assessment. However,

the measurement period is rather short, so that LIMS has little to say about trends. Its main value
here is to validate other data sources.

3.5.3 Discussion

In view of the above characterisation of the various sources of data, it is clear that com-

parisons should be made only over the range of validity of the individual data sets, at comparable

vertical resolutions, degrading the higher resolution data as necessary. It would be helpful for
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future exercises of this kind if data suppliers could present a standard set of observing system
characteristics, perhaps based on those developed for this report.

Retrieval methods appropriate to trend estimation are not necessarily the same as methods
appropriate to estimation of single profiles because it may be possible to largely eliminate

random error in the long-term averages required for trends. However, the retrieval methods

used for the data now available are designed for single profiles. Further research is needed to

design trend profile retrieval methods.

An alternative approach to trend detection is to look for changes in the quantity actually

measured, without retrieving a profile. Modeled changes in the ozone distribution can be used

with the forward model for a particular instrument to determine whether the resulting per-
turbation in the quantity measured is detectable.

I
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4.0 INTRODUCTION

A century ago, Hartley (1881a) explained the observed sharp 293-nm cutoff in ultraviolet (UV)

radiation at Earth's surface as caused by ozone whose UV spectrum he had measured in the

laboratory. By finding the same cutoff in mountaintop measurements, Hartley later showed that
most of the ozone existed in the atmosphere at still higher altitudes (1881b). The initial

quantitative measurements of the total ozone content in the vertical column were made with

optical instruments at ground level about 75 years ago by Fabry and Buisson (1913, 1921). The
subsequent discovery that concentrations of ozone in the vertical column varied with local

weather conditions inspired several scientists, including G.M.B. Dobson, to begin systematic

ozone measurements in the 1920% largely with the hope of improving the capabilities of weather

forecasting (Dobson and Harrison, 1926; Dobson et al., 1927, 1929; Dobson, 1930; Cabannes and

Dufay, 1927; Fowle, 1929). The basic ultraviolet double rnonochromator spectrophotometer

system developed then by Dobson is still the instrument used in the ground-based observational

network for the determination of the total ozone content of the atmosphere, and the standard
instrument is now known as a Dobson spectrophotometer (Dobson, 1931, 1957a,b, 1973).

Total ozone is defined as being equal to the amount of ozone contained in a vertical column

with a base of 1 cm 2 at standard pressure and temperature, and can be expressed in units of

pressure with a typical value of about 0.3 atmosphere cm. The more frequently used unit is

milliatmosphere centimeters, commonly known as the Dobson Unit (DU). One DU represents

an average atmospheric concentration of approximately one part per billion (ppb) by volume of
03, but the ozone is not distributed uniformly through the vertical column. Typical amounts of

ozone vary from 230 to 500 DU's, with a world average of about 300 DU. About 90 percent of

atmospheric ozone lies in the stratosphere, a fact already well known during the 1930"s.

Several other instruments used to measure ozone are based on principles similar to those of

the spectrophotometer designed by Dobson. These instruments include the M-83 filter ozon-

ometers in use for the last 30 years at as many as 45 stations in the U.S.S.R., the Brewer

spectrophotometers recently introduced chiefly in Canada, and the new M-124 filter ozon-
ometers in the U.S.S.R. (Gustin, 1963, 1978; Brewer, 1973; Gustin et al., 1985). The principles of

operation of these ground-based instruments, the length of their record, and their locations are

described in Section 4.1 of this chapter. Several satellite-based instruments measure ozone; for

the purposes of this chapter only the results from the Total Ozone Mapping Spectrometer

(TOMS) are extensively discussed. Section 4.2 contains a description of this instrument as well as

brief descriptions of the other satelliteborne instruments; Chapter 2 contains a fuller discussion
of the satellite instruments.

If one is to have faith in the trends versus time calculated from a long time series of

measurements, it is extremely important that the quality of the data is high. Critical examination
of the data from the individual Dobson stations and from the TOMS satellite instrument has been

carried out, and the diagnostic tools used are described in Sections 4.3 and 4.4, respectively. In
both cases, the data needed some revision; the Dobson data have been corrected using informa-
tion available in the records of the individual stations. Because of time and labor constraints, the

process of revision treated only the monthly average ozone values from the Dobson stations, and
the improved and recommended data set is, therefore, referred to as "Provisionally Revised." A

full review of the Dobson data requires that each reading be examined and that the review is

carried out on a station-by-station basis, with full access to all of the daily log books and records.

It is hoped that individual stations will do this and that their fully revised data sets can, in time,

take the place of the provisionally revised data sets presented in Appendix A to this chapter.
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Sections 4.5 and 4.6 describe the statistical analysis of this provisionally revised data set; the

results are presented in Appendix B to this chapter.

A drift in the calibration of the TOMS instrument was found relative to both the network of

Dobson instruments and to the Dobson Primary Standard instrument. The likely cause of this

drift is an imperfect correction for the known slow degradation of the TOMS diffuser plate from

cumulative direct Sun exposure, as discussed in detail in Chapter 2. The TOMS data set has,

therefore, been normalized to the results of the network of Dobson instruments. This continuing

normalization over the whole time period provides a time-dependent correction for the diffuser

plate. Because TOMS has global coverage, this procedure allows an analysis of the changes in
total ozone that occurred anywhere in the world between 1979 and 1987, as described in Section
4.7.

In summary, the basic intent and philosophy of this chapter has been a very careful

examination of all of the available total ozone data. Preliminary data analyses have been carried

out on data sets as recorded in the archives for both the ground-based Dobson and TOMS

satellite instruments. More sophisticated statistical calculations were carried out on data sets

corrected by the procedures described in this chapter. The scope of these statistical analyses has

also been widened in a search for any seasonal and latitudinal effects in the trends in total ozone.

4.1 GROUND-BASED MEASUREMENTS OF OZONE

Three instruments are routinely used to measure total ozone from Earth's surface: the

Dobson spectrophotometer, the M-83 filter ozonometer, and the Brewer grating spectropho-

tometer. The Dobson and M-83 stations have data sets that are long enough for meaningful
trend analysis. However, the Dobson instruments constitute the backbone of the ground-based

network, as the number of stations is greater and the records are typically longer. The Brewer

instrument has been in regular use for a much shorter time and currently has no long-term

records suitable for such analysis. Total ozone data are routinely reported to the World Meteor-

ological Organization-World Ozone Data Center (WMO-WODC) in Toronto, Canada, and

printed regularly in a series of publications entitled Ozone Data for the World (ODW).

4.1.1 Dobson Spectrophotometer

4.1.1.1 Operation

The standard instrument in the Global Ozone Observing System is the Dobson spec-

trophotometer, containing a double quartz-prism monochromator that permits comparison of

the radiances at two different wavelengths in the ultraviolet (UV). The basic design has been

described by Dobson (1931) and has undergone many improvements in its optics and in the

electronic evaluation of its signals. Detailed descriptions of its operation and physical accuracy

have been given by Dobson (1957a,b; Dobson and Normand, 1962) and, more recently, in WMO

Ozone Project Report Nos. 6 (Komhyr, 1980) and 13 (Basher, 1982). The operational principle of
the Dobson spectrophotometer is based upon the knowledge that the absorption coefficient of

ozone for ultraviolet radiation decreases rapidly with increasing wavelength across the Huggins

absorption band (300-350 nm), providing a range in Earth's atmosphere from nearly complete to

only minor absorption of incoming solar radiation. The technique utilizes the relative absorption

of solar radiation from two wavelengths, one absorbed moderately strongly by ozone and one

absorbed slightly. The basic measurement of ozone relies on the ratio of the intensities of UV
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radiation at two standard wavelengths. Measurements are made looking directly at the Sun near
noontime, or symmetrically before and after noon. (At local noon the path length of the solar

radiation through the atmosphere is shortest, and the air mass, /.L, defined as the actual path

length of the solar beam divided by the vertical path through the atmosphere, is also smallest.

Measurements are made most accurately when the air mass is low because the intensity of UV

light reaching Earth's surface is greatest.) The individual measurements are averaged to form the

daily value. Four UV wavelength pairs have been established by the International Ozone

Commission (Table 4.1), and recommended for universal use by the WMO.

Table 4.1 Ultraviolet Wavelength Pairs Used for Atmospheric Ozone Measurements With
Dobson Spectrophotometers (Wavelengths in Nanometers).

Pair Wavelength Wavelensth

Designation
A 3O5.5 325.4

B 3O8.8 329.1

C 311.45 332.4

D 317.6 339.8

C' 332.4 453.6

0 3 Absorption Coefficient (a)

1.748

1.140

0.800

0.36O

(a) Difference in ozone absorption coefficients (in units of atm -lcm) for the shorter wavelength

minus longer wavelength (according to the 1968 recommendations by IOC and WMO based on
the Vigroux coefficients (1967).

The most widely used combination, recommended as the international standard, is the pair

of wavelength pairs listed as A and D in Table 4.1. The combined absorption for this "AD pair" is

(OtA - OLD)= 1.388. Measurements of most physical quantities exhibit changes in the "best" or

"accepted" values over time as equipment is improved or minor errors are discovered; the values
for the absorption coefficients of ozone have changed several times in this manner over the last

half century. The value of (eta - etD) for the AD pair was defined in July 1957 for the International
Geophysical Year to have the value 1.388, based upon the absorption coefficient measurements

of Vigroux (1953, 1967), and has not been changed since, even though additional careful

evaluations have been carried out. In this arrangement, the amount of atmospheric ozone is

calculated from the UV radiation received at the two shorter wavelengths, and separately from

the two longer wavelengths from the AD pair. The reported ozone content is obtained from the
combined results of the four wavelengths. As the slant path of sunlight becomes longer, as in

high-latitude stations in midwinter, so much light is absorbed at 305.5 nm that measurements
with the A pair become very difficult and inaccurate, and observations tend to be made with the

CD double wavelength pairs for which sufficient UV light is still arriving at 311.45 nm and 317.6

nm. At very low Sun angles and very long slant paths, it can become necessary to use the C'

wavelength pair for higher accuracy.

While the observation of the ratio of received UV light for standard wavelength pairs from

direct sunlight is preferred, such observations are not always practicable or even feasible. In the
winter months at very high latitude stations, little or no direct sunlight is received. In this

situation, observations are possible using direct moonlight--but are clearly much more difficult

because of the much lower UV light intensity reflected by the Moon. At other latitudes,

measurements are also desirable on days in which direct sunlight is intermittent or absent. These

observational data are based upon the measurement (at the same standard wavelengths) of

scattered sunlight from either the clear or cloudy zenith sky, converted to the standard
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AD-direct-Sun measurement by an empirically established transfer table. The accuracy of this
transfer depends upon numerous carefully taken, nearly simultaneous, direct-Sun and zenith-

sky observations. These are performed by alternating sequential measurements of the ratios of

radiation received from the direct Sun and from either the clear or cloudy zenith sky on days
when such experiments are possible. Empirical zenith sky charts must be constructed for each

station as functions of the total ozone content; of the air mass (/._), i.e., the slant angle of the Sun;
and of the instrument readings themselves. Sky charts are further constructed for the various

kinds of cloud layers found over the particular station. Accurate sky charts require a very

substantial amount of careful scientific work, and individual stations frequently use charts of less

than optimum reliability, as for instance one constructed for another, geographically distant
station with different average vertical ozone distributions and with different cloud conditions.

The direct-Sun measurements are more straightforward than any of the others and are normally

of higher accuracy. For some purposes, calculations can be carried out using only the direct
Sun-data, but in most locations this may limit the information to only half or fewer of the days in
some months.

No completely satisfactory method is available for estimating the scattering of ultraviolet
radiation by aerosol or dust particles. In practice, because most ozone observations are made on

the double AD pair of wavelengths and because both A and D pairs are approximately equally
affected by aerosol scattering, any aerosol effect on UV penetration is assumed to cancel. The

absorption by ozone then remains the overwhelmingly major factor causing differential removal

of the different UV wavelengths from the direct path of sunlight. The effects of aerosol scattering
in the presence of very large quantities of such particles, as in the aftermath of large volcanic

explosions, requires careful separate consideration, but the effects of even large amounts of

volcanic dust on measurements of total column ozone are very small. Such scattering from
volcanic aerosol is of primary importance for attempts to determine the vertical distribution of

ozone from Umkehr measurements made as the Sun approaches the horizon (see Section 4.1.4).

For the purposes of the standard observation of absorption of radiation by ozone, the altitude

at which this absorption occurs is of relatively minor importance. An ozone molecule is capable
of absorbing ultraviolet radiation at about 300 nm with approximately equal efficiency at all

altitudes, and the net effect is the same at the arrival slit of the ground-based instrument.

However, the ability of ozone to absorb ultraviolet radiation does exhibit a small temperature

dependence (varying by about 0.13 percent per °C at the average temperature of the ozone layer)
so that the conversion of a measured fractional UV absorption into number of molecules of ozone

has a slight temperature dependence. No corrections are made in the standard Dobson mea-

surements for these temperature effects, and the amounts of ozone are calculated as though all of
the ozone molecules in the atmosphere were present at a temperature of -44°C, chosen as

generally appropriate for the lower stratospheric location of most of the ozone molecules. Small

errors can thus be introduced into the relative comparison of total ozone columns measured with

different average stratospheric temperatures. Comparisons for the same months in different

years are affected only if the average temperature of the stratosphere has changed significantly,
and then only to a slight extent.

The reported amounts of ozone are also dependent upon the measured absorption cross-
sections of ozone at the various wavelengths used with the Dobson instrument. These absorp-

tion coefficients have been determined more and more accurately by various research groups

over the years, with the most recent being the measurements of Bass and Paur (1985) and the
closely concurrent results of Molina and Molina (1986). By international convention, the world-

wide Dobson network has reported all data subsequent to July 1, 1957, as calculated with the
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ozone absorption coefficients measured by Vigroux, and this procedure, amended in 1968, is still

in force. The (OLD- O_D)value for the AD pair is 1.388 with the Vigroux coefficients and 1.428 with

the Bass-Paur coefficients. A systematic bias of several percent therefore exists in any evaluation
of the absolute amounts of ozone with a Dobson instrument using the Vigroux coefficients

relative to the same data interpreted with the newer Bass-Paur absorption coefficients. (The

instrument readings from the Nimbus-7 satellite are converted into ozone with the Bass-Paur

coefficients.) Although the absolute amounts of ozone as evaluated with the Vigroux coefficients
are presumably slightly in error, no bias exists in any trend measurements with the Dobson

system for AD data collected from 1957 on and uniformly interpreted with the same (Vigroux)

absorption coefficients. Prior to 1957, a different set of absorption coefficients (Ny and Choong,

1932, 1933) was in use as the standard, and comparisons of pre-1957 and post-1957 data with

Dobson instruments must be made with correction for this change of absorption cross-sections

assumed in the ozone calculations. The AD wavelength pair was adopted as the standard for

ozone measurement in 1957, with the agreement that measurements made with other wave-

lengths should be transferred to the AD standard to eliminate systematic biases related to the

absorption coefficients. The number of ozone stations operating before 1957 was relatively small,
and no data taken prior to 1957 have been used in the statistical evaluations reported later in this

chapter.

4.1.1.2 Sources of Errors and Ozone Data Quality

In order to determine the accuracy of ozone measurements, one needs to consider possible

errors related to single-station measurements as well as potential sampling errors in the event

that geographical averaging of the data is attempted. There is no simple method for combining

the various error estimates into a single "accuracy" value. Most of the individual sources of error

and theoretical estimates of their values are considered in detail by Basher (1982) in WMO Ozone

Report No. 13. Our brief discussion here attempts incorporation of pertinent information from

some other sources (WMO Ozone Report Nos. 9, 11, 12) as well as rough estimation of the

accuracy of the data set used in this report.

The precision of long-term total ozone measurement from a Dobson spectrophotometer is
estimated for annual means at _-_1 percent (at the 2 5 level), based on the standard deviation (3)

from the mean analysis of individual stations. However, attainment of this precision requires

consideration of a number of error sources, described in detail in WMO Ozone Reports 9 and 13.

These include absolute instrument calibration at various times during a solar cycle; observational
and instrumental errors; aerosol effects; ozone absorption coefficient uncertainties, including

temperature dependence; interfering trace gas absorbing species; ozone produced in the trop-

osphere; and uncertainties in the empirically derived relations between direct and clear or cloudy

zenith-sky observations.

The accuracy of the Dobson instrument is strongly dependent on the quality of the instru-

ment's calibration and operation. Unfortunately, this quality can vary widely during an instru-

ment's history, and only through the availability of periodic recalibrations can the ozone data be
reevaluated.

Until 1973, instrument calibrations at different stations were conducted randomly and

independently. In some cases, only the manufacturer's original calibrations were used. Theoreti-

cal error studies and field intercomparisons show that such instruments may exhibit systematic

errors as large as 10 percent in the direct Sun ozone measurements at the AD wavelengths, with

mean biases for the worst cases in the order of 5 percent. From 1974 on, increasing numbers of
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instruments have been modernized, refurbished, and calibrated by direct intercomparison with

the WMO-designated World Primary Standard (Dobson No. 83) located at the World Dobson

Spectrophotometer Central Laboratory at Boulder, Colorado. In subsequent intercomparisons,

these instruments show typical calibration changes of 1 percent to 2 percent in AD-wavelength

direct-Sun measurement, which is close to the limit of accuracy expected on the basis of

theoretical and experimental studies. It should be noted immediately that, following recalibra-

tion, a step change in the ozone calculated from the instrument can appear comparable to the
percentage change in the recalibration. However, in the present study, the required mean
corrections were considered in reevaluation of the station data.

Instrument errors are generally not fixed percentages valid for all conditions throughout the

year, but may vary with solar altitude and ozone amount and, therefore, with latitude and

season. The AD wavelength ozone absorption coefficient, and therefore the absolute values of

AD estimated total ozone, may have bias errors of up to 3 percent and will vary by about -2

percent for the maximum seasonal and latitudinal variations of about 15°C, in ozone-layer-
weighted mean temperature. Actual stratospheric temperature observations indicate any long-

term changes in temperature vertical profiles could contribute less than 0.5 percent per decade to

any trends in total ozone data because neither season nor latitude is a variable in data sets used

for evaluation of specific trends.

Errors originating from aerosol scattering are usually much less than _+1 percent, but may

rise to +-3 percent during occasional extremely hazy conditions or nearby volcanic eruptions.
Errors from interfering tropospheric absorbers (mainly SO2, NO2, and locally produced ozone)

are usually negligible, but may raise the background error to about 1 percent. Solar irradiance

changes around 300 nm are considered negligible, and therefore have no effect on instrument
calibrations.

The international protocol calls, where possible, for a report of the total ozone measured for

each day by each Dobson station, together with coded information indicating the wavelengths

used and the technique involved--i.e., direct Sun, moonlight, clear zenith sky, etc. The daily

Dobson total ozone data stored at the WMO-WODC are usually means of three or more
measurements taken within a period of several hours centered on local solar noon. These

individual daily ozone values are combined to form a monthly average, also reported to the

WMO-WODC, and the monthly averages can, in turn, be combined to provide a yearly average

ozone value. Not infrequently, weather conditions or other difficulties may prevent a successful

measurement on a given day, or for several days in a row, or the measurement may be

successfully made at a time not near solar noon at the station. Monthly averages are then

calculated as the average of the daily values for the days with measurements, no attempt being

made to interpolate or estimate the ozone values for the days without measurements. This

inclusion of some days for which the data are not noontime measurements and the complete

omission of other days raises the general problem of sampling errors for individual stations.
Mean diurnal variations are thought to be less than 1 percent and contribute negligible sampling

error. The size of day-to-day variations increases poleward with latitude, and seasonally from

summer/autumn to winter/spring.

These seasonal variations range from a minimum of about 5 percent in the Tropics to about 30

percent in high-latitude winters and springs. Weather conditions and operational factors that

cause great losses of data (e.g., fewer than 13 daily readings in a month) may cause biases of

perhaps 5 percent in the mean ozone for some months, especially since total ozone amounts are

strongly correlated with the synoptic weather conditions. Special care must be taken when
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analyzing winter data from high latitude stations for which the limited data may not be

representative of the actual average monthly ozone amount. The uneven geographical dis-

tribution of the global Dobson spectrophotometer network is a further spatial source of sampling

error when attempts are made to determine global ozone content and trends. The limited

number of existing DoBson stations, their scarcity south of 30°N latitude, and the low-frequency

variations of large-scale planetary waves should be accounted for in attempts for global total

ozone analyses.

It is clear that the reliability of ozone measurements depends on random as well as systematic

(or bias) errors. The latter are important for determination of ozone trends. If the period of

variation of a systematic error is much shorter than the length of ozone record under con-

sideration, it is treated as a random error. Sources that can promote errors with trendlike

behavior are listed in Table 4.2, expressed in percent per decade.

Table 4.2 Possible Causes of Error in Ozone Trends From Dobson Stations; Estimates of the

Effects on the Determined Trends Due to Instrumental and Other Experimental

Causes.

Potential Error Good case (%) Bad case (%) Note

Optical calibrations
Uncorrected instrument drift

Trend in ozone layer "mean" temperature
Extraterrestrial constant

Aerosol extinction

Interfering absorption

Increasing tropospheric ozone

0.4 2.0 (a)

<1.0 2.0 (b)

0.2 <0.5 (c)
0.1 2.0 (d)

0.] <1.0 (e)
o.] <0.5 (t)
0.2 ].o (g)

The first number is an estimate applicable to "good" stations with reevaluated data records, as those used in the
present report, while the second number refers to the "worst" conditions, occurring as exceptions.

(a) May create step-changes if the data record prior to calibration is not reevaluated using the calibration. The
experience with the published data indicates an error on the order of 1 to 2 percent and, only in a few isolated cases, up
to 5 percent.

(b) Can be positive or negative depending on the cause. A number of instruments have been compared with the
World Primary Standard on a few occasions during the last 14 years and have shown either no drift or a drift of <1
percent.

(c) A 5°C change per decade is required to introduce a 0.5 percent error. There is no evidence for such stratospheric
temperature changes except in the Antarctic in springtime in the past decade. Our statistical procedures have not been
applied to these Antarctic data.

(d) The "extraterrestrial constant" is the ratio of solar intensities for each standard wavelength pair, and is, in
principle, identical for all locations, being a function only of solar conditions. In practice, however, the instrument
accepts a band centered on each standard wavelength, and minor variations can exist in these band passes, requiring
calibration for each specific instrumental construction. Transfers from the Primary Standard through direct com-
parisons have assured <1 percent error, although there are isolated cases with much higher potential error.

(e) May influence the AD measured ozone only in the event of a continuous extreme increase (or decrease) of
aerosol pollution.

(f) Gases such as SO2 and NO2 can have an effect only if measurements are carried out in the immediate vicinity of
the source and if their concentrations are steadily increasing.

(g) An increase in tropospheric ozone is not a potential error in measurement of total column ozone, but a possible
contributor to a trend in total ozone. Such tropospheric ozone changes only become a "potential error" when, as is
often done, measurements of total ozone are used as direct estimates of possible trends in the stratospheric
contribution to total ozone.

(h) The combination of biases due to bandwidth effect, airmass calculation, solar irradiance variability, and
sampling practices is likely to be negligible.
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Despite the difficulty in estimation and the need to use individual judgment, one can attempt

to determine the potential error, giving an overall indication of the accuracy of the Dobson data

used in this report. These systematic errors are believed to be uncorrelated, with some positive

and others negative, and the bounds of the accuracy can then be estimated as the square root of

the sum of the squares of the individual error terms above, or from about 1.2 percent for stations
with reevaluated records to 3.8 percent for the "worst" station case.

An important point is that statistical trend analyses of historical data series, if properly done,

can show any substantial step changes in the data record, together with any systematic

variations or excesses in the quasi-random components of the record. Clearly, in order to extract
the most information from any Dobson ozone data set, it is essential for statisticians and

instrument specialists to examine the data set together, preferably on a station-by-station basis.

Typical error estimates, such as those given here, may result in large overestimates or under-

estimates of errors for a particular instrument, as well as a missed opportunity to detect, and
hence correct, obvious data errors.

4.1.1.3 Geographical Distribution of Dobson Stations

For historical and geographical reasons, the Dobson stations with the longest records are
spread unevenly around the world, with the greatest number located in Europe and North

America. Figure 4.1 displays a global map of the location of the ground-based ozone stations

Figure 4.1 Geographical distribution of Dobson stations with long records. Revisions needed in some cases
before the data are suitable for trend analysis (the letters shown correspond to those given in Tables 4.3 and
4.4).
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with records over a substantial period of time. Table 4.3 provides a list of Dobson stations for
which revised ozone data are available; Table 4.4 lists some additional Dobson stations whose

data are mentioned in this report. More stations are now in operation, especially in the Tropics,

but the coverage of the Southern Hemisphere outside the Antarctic continent is still poor. The

most recent index of Ozone Data for the World contains a detailed listing of all of the ozone stations

that have been in operation at any time during the period from 1957 to 1988.

Table 4.3 Dobson Stations for Which Preliminary Revised Ozone Data Are Available Over Time
Periods Long Enough for Trend Analysis.

Station Country Latitude Longitude Altitude Dates Measured

Meters Start Thr,oush

Northern Hemisphere

1 Reykjavik Iceland 64o08 , 21°54'W 60 6/57 10/86"*
2 Lerwick U.K. 60°08 , 1°11'W 80 1/57 11/86"

3 Leningrad U.S.S.R. 59058 , 30°18'E 74 8/68 12/86
4 Churchill Canada 58045 , 94°04'W 35 1/65 12/86

5 Edmonton Canada 53034 ' 113°31'W 668 7/57 11/86

6 Goose Canada 53°19 , 60°23'W 44 1/62 10/86

7 Belsk Poland 51°50 ' 20°47'E 180 1/63 12/86

8 Bracknell U.K. 51023 , 0°47'W 70 5/69 12/86"

9 Uccle Belgium 50°48 , 4°21'E 100 2/71 12/86
10 Hradec Kralove Czechoslovakia 50°11 , 15°50'E 285 1/62 12/86

11 Hohenpeissenberg F.R.G. 47°48 ' ll°01'E 975 1/67 12/86
12 Caribou U.S.A. 46052 , 68°01'W 192 6/62 12/86

13 Arosa Switzerland 46°46 , 9°40'E 1860 1/57 12/86

14 Bismarck U.S.A. 46°46 ' I00°45'W 511 1/63 12/86

15 Toronto Canada 43°47 ' 79°28'W 198 1/60 12/86

16 Sapporo Japan 43o03 ' 141°20'E 19 1/58 12/86

17 Rome Italy 42005 ' 12°13'E 262 4/54 12/86"
18 Boulder U.S.A. 40°01 ' 105°15'W 1634 1/64 12/86

19 Cagliari Italy 39o15 , 9°03'E 4 1/56 12/86"*

20 Wallops Is. U.S.A. 37o51 ' 75°31'W 4 1/70 12/86
21 Nashville U.S.A. 36°15 , 86°34'W 182 1/63 12/86

22 Tateno Japan 36°03 ' 140°08'E 31 7/55 12/86

23 Srinagar India 34°05 ' 74°50'E 1586 7/57 5/86**

24 Kagoshima Japan 31o38 ' 130°36'E 283 4/61 12/86"
25 Quetta Pakistan 30°11' 66°57'E 1799 7/57 12/86

26 Cairo Egypt 30005 , 31°17'E 35 11/74 10/86
27 Mauna Loa U.S.A. 19°32 ' 155°35'W 3397 1/64 12/86

Southern Hemisphere

28 Huancayo Peru 12°03 ' 75°19'W 3313 2/64 6/86
29 Samoa U.S.A. 14°15 ' 170°34'W 82 1/76 12/86

30 Aspendale Australia 38°02 ' 145°06'E 0 7/57 12/86
31 MacQuarie Is. Australia 54°50 ' 158°57'E 6 8/62 12/86

*Stations for which further reassessment of the ozone data is recommended, with evaluation of the detailed station
records.
**Interruptions in the record.
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Table 4.4 Other Dobson Stations for Which the Records Are Too Short for Trend Analysis, Have
Major Interruptions in Their Records, or Are Otherwise Unsuitable at the Present Time
for Analysis on an Individual Basis.

Station Country Latitude Longitude Altitude Dates Measured

Meters Start Throush

Northern Hemisphere

A Spitzbergen Norway 78°56 ' 11 °53'E 0 50 86
B Resolute Canada 74043 , 94°59'W 64 57 86

Point Barrow U.S.A. 71019 , 156°36'W 973 82

C Tromso Norway 69039 ' 18°57'E 100 35 86

D Oslo Norway 59°54 ' 10°43'E 50 57 86

Uppsala Sweden 59o51 ' 17°37'E 15 57 66
E Aarhus Denmark 56°10 ' 10°12'E 53 41 86

Eskdalemuir U.K. 55019 ' 3°12'W 242 57 63

F Potsdam G.D.R. 52°22 ' 13°05'E 89 57 86

Oxford U.K. 51°45 ' 1°11 'W 140 28 67

Moosonee Canada 51°16 ' 80°39'W 10 57 61
Camborne U.K. 50o13 , 5°19'W 88 57 67

Mont-Louis France 42030 , 2°08'E 1650 62 79

Shiangher China 39°46 ' 117°00'E 13 79 86

G Lisbon Portugal 38046 ' 9°08'W 105 60 86

Messina Italy 38°12 ' 15°33'E 51 57 75
White Sands U.S.A. 32023 , 106°29'W 1224 72 81

Torishima Japan 30029 ' 140°18'E 83 57 65
H Tallahassee U.S.A. 30026 ' 84°20'W 53 64 86

I New Delhi India 28038 , 77°13'E 216 57 86

Naha Japan 26°12 ' 127°41'E 27 74 86
J Varanasi India 25o18 ' 83°01'E 76 63 86

Kunming China 25°01 ' 102°41'E 1917 80 86
K Ahmedabad India 23001 , 72°39'E 55 51 86

with Mt. Abu India 24036 ' 72°43'E 1220 69 84

Mexico City Mexico 19°20 ' 99°11'W 2268 74 86
Poona India 18032 ' 73°51 'E 559 73 86

Bangkok Thailand 13°44 ' 100°34'E 2 78 86
K Kodaikanal India 10014 ' 77°28'E 2343 57 86

Singapore Singapore 1°20 ' 103°53'E 14 79 86

Southern Hemisphere

Cairns Australia 16°53 ' 145°45'E 3

Cachoeira Pau. Brazil 22o41 ' 45°00'W 573 74 86

Brisbane Australia 27°25 ' 153°05'E 5 57 86

M Perth Australia 31055 , 115°57'E 2 69 86

N Buenos Aires Argentina 34°35 ' 58°29'W 25 65 86
O Hobart Australia 42o49 , 147°30'E 4 67 86

P Invercargill New Zealand 46025 ' 168°19'E 1 71 86

Argentine Is. U.K. 65o15 , 64°16'W 10 57 86

Syowa Japan 69000 , 39°35'E 21 61 86

Halley Bay U.K. 75°31 ' 26°44'W 31 56 86
Amundsen-Scott U.S.A. 89059 ' 24°48'W 2835 61 86
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4.1.1.4 Instrument No. 83: The Role of the Dobson Primary Standard in Long-Term
Calibration

With the realization in recent years of the potential for partial destruction of the atmospheric

ozone layer by manmade trace gas pollutants, the task of accurate, long-term measurement of

total ozone has grown in importance. Temporal fluctuations in ozone also occur naturally--as a

result of changes in circulation patterns that transport ozone, variations in solar ultraviolet

intensity over the 11-year solar sunspot cycle, etc. To separate man-induced from natural

changes in ozone, long-term ozone measurement precision of +0.5 percent is desirable.
Additionally, global coverage for total ozone measurements, as provided by satellite ozone

instrumentation, is highly desirable. Among the currently available ground-based instruments

for measurement of total ozone, only Dobson spectrophotometers have been used for long-term
calibration of satellite ozone instrumentation.

The maintenance of a Dobson spectrophotometer in calibration requires that observations
with the instrument are always made on correct wavelengths (to within 0.04 nm); that the

instrument's optical wedge (adiusted to provide a null signal between the two wavelengths of

the measurement) is calibrated to a high degree of accuracy; that temporal changes in the

instrument's spectral response are monitored routinely with standard ultraviolet lamps; and that

the extraterrestrial constants (the ratio of the solar intensities of the wavelengths as they reach

Earth before any atmospheric attenuation) for the instrument are known with high accuracy at

the various pairs of wavelengths. Procedures for establishing correct Dobson spectrometer

wavelength settings and for calibrating the optical wedge have been standardized (Dobson,

1957b).

In principle, any spectrophotometer within the global Dobson instrument station network

can be maintained in calibration by the established procedures. However, scattered light within

an instrument can present a problem. If the light scattering is appreciable for observations on low
Sun (/z = 2.5-3.2), then the absolute calibration determined for the instrument can be sig-

nificantly in error. Furthermore, should the light scattering gradually increase with time, a

fictitious trend can be introduced into the measured total ozone amounts. Significant absolute

calibration errors can also occur with the Dobson spectrophotometer if the measurements are

made at sites where observing conditions for calibration are not ideal--i.e., where atmospheric

turbidity is appreciable and large day-to-day changes occur in total ozone. Calibration of the
extraterrestrial constants for the various wavelength pairs is most favorable under conditions of

directly overhead Sun, clear sky, and negligible variation over the course of a day in the amount

of ozone in the atmosphere. The U.S. tropical site at 3,400 meters altitude on Mauna Loa, Hawaii,

provides an especially favorable location for such calibrations.

To achieve compatibility in ozone data from the global Dobson spectrophotometer station

network, a procedure was established in 1976 by the Atmospheric Ozone Research Project of the

WMO whereby a set of regional secondary standard Dobson spectrophotometers are calibrated

at periodic intervals relative to a primary standard Dobson instrument. The secondary standard

instruments serve to calibrate fieldstation Dobson spectrophotometers within their respective
regions. Dobson spectrophotometer No. 83 was established in 1962 as the standard U.S.

instrument for measurements of total ozone. In August 1977, Dobson No. 83 served as the

reference spectrophotometer during an international intercomparison of regional secondary
standard Dobson instruments held in Boulder, Colorado. In 1980, instrument No. 83 was

designated by the WMO as the Primary Standard Dobson Ozone Spectrophotometer for the

world. Table 4.5 lists the regional secondary standard Dobson instruments, and the dates when

they were calibrated relative to instrument No. 83.
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Table 4.5 Primary and Secondary Standard Dobson Ozone Spectrophotometers.

Instrument Number Count_ Calibration Dates

83** U.S. 1962, 1972, 1976, 1978, 1979, 1980, 1981, 1984, 1986,
1987, 1988

41 U.K. 1977, 1981, 1985
64 G.D.R. 1981, 1986

71 G.D.R. 1977, 1986

77 Canada 1977, 1981, 1986"

96 Egypt 1977, 1986
105 Australia 1977, 1984, 1988

108 U.S.S.R. 1977, 1988

112 India 1977, 1984

116 Japan 1977, 1984, 1988

*Indirect calibration in 1986, involving a Brewer ozone spectrophotometer.

**Designated by WMO in 1980 as World Standard Dobson Spectrophotometer; calibrations performed at Mauna Loa
Observatory, except at Sterling, Virginia, in 1962.

While calibrations of this kind ideally should occur at 3- to 4-year intervals, national or

international funding for such a routine program has not been established. Nevertheless, nearly
all Dobson instruments in the global Dobson spectrophotometer station network now have

calibrations traceable either directly or indirectly to World Standard Dobson Instrument No. 83

(Komhyr, 1987, 1988). The conclusions drawn in this chapter and in the full report are strongly
based on the provisionally revised ground-based data, and these in turn are traceable to the
calibration record for instrument No. 83. The TOMS satellite data have been normalized to the

Dobson network, and therefore also to the calibration record of instrument No. 83. The integrity
of the conclusions concerning any trends in total ozone depend critically, therefore, on the

calibration and maintenance record of instrument No. 83, for which a detailed description is now
presented.

The normal calibration procedure depends on sequential total ozone observations made on
the direct Sun during clear-sky half-days (i.e., A.M. or P.M.) when 1.15 </_ <3.2, and total ozone

remains fixed or varies only slowly with time. Graphical analysis of the changing ratios of UV
light received versus path length through the atmosphere permits accurate evaluation of the

ratios received at the top of the atmosphere--i, e., the extraterrestrial constant. A comprehensive

series of such calibration observations was obtained over a period of many days with instrument

No. 83 at Mauna Loa Observatory (MLO) in 1976. This series established, on August 26, 1976, a

calibration scale according to which all other domestic and foreign spectrophotometers have
been calibrated. The N values determined for a series of standard lamps at that time defined an
essentially independent 1976 standard lamp calibration scale for Dobson instrument No. 83.

Absolute calibrations of instrument No. 83 were also conducted at MLO in 1972, 1978, 1979, 1980,

1981, 1984, 1986, and 1987. A similar calibration was performed on the instrument at Sterling,
Virginia, in 1962. Differences among the recorded values for any of these separate absolute
calibrations represent a composite estimate of the precision with which such observations can be

made and the stability of the instrument itself over a 25-year period.

The results of these absolute calibrations are summarized in Table 4.6. Column 4 of the table

lists the mean total ozone amounts measured during each of the calibration time intervals using
the August 16, 1976, calibration scale for data processing.
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Table 4.6 Summary of Results of Calibrations of World Standard Dobson Spectrophotometer
No. 83 With Standard Lamps and by Means of Direct-Sun Observations at Mauna Loa
Observatory.

Times No.
of Obs.
Calibra- Used/
tions Made

Wave- Reference: 1976 MLO CalibA" Reference: Std. Lamp Calib.H" % Error % Error

lengths x S Adj. x x S S.e. x in x in x (1976
kh (1976 MLO (1970 MLO (Std. Lamp (New MLO (Std. Lamp MLO

calib.) calib.) calib.) calib.) calib,) calib.)
Notes

AD 280 0.00I 280 280 -0.002 ±0.004 280 +0.2 0.1

May 14 9/I2 A -0.00I 280 -0.003 ±0.005 281
to CD 279 -0.001 277 277 -0.002 ±0.003 274 +0.9 + 1.6 Very clear sky.

June22 C -0.001 281 -0.001 ±0.002 281
1972 D -0.001 283 0.000 ±0.004 287

AD 274 0.000 274 -- -0.00I -+0.00I 274 0.0 0.0 Very dear sky

June 16 86/90 A 275 0.000 275 -- -0.001 ±0,002 275 0.0 0.0 Sunspot cyde
to CD 278 0.000 278 -- 0,000 -+0.(301 278 0.0 0.0 minimum.

Aug. 25 C 278 0.000 278 -- 0,000 ±0.001 278 0.0 0.0 *Aug. 26, 1978
1976 D 278 0.0043 278 -- 0,000 ±0.001 278 0.0 0.0 Calibration

Scale

AD 273 0.000 273 273 0,006 ±0.002 275 -0.7 - 0.5

July 13 29/33 A -0.002 274 0.001 ±0.002 274
to CD 274 0.002 276 272 0.004 ±0.001 276 1.6 -0.8 Very clear sky.

Aug. 23 C 0.000 276 0.000 ±0.001 274
1978 D -0.002 276 -0.005 ±0.00l 271

AD 282 0.002 282 282 0.006 ±0.002 284 -0.7 -0.7 Very clear sky.
June 8 43/51 A 0.001 284 0,003 ±0.002 284 Sunspot cycle

to CD 282 0,002 284 282 0.003 ±0.001 285 1.0 -0.9 maximum.

Aug. 14 C 0.002 288 0.001 ±0.001 284
1979 D 0.000 289 -0,002 ± 0.0(31 283

AD 272 -0,002 271 272 0.004 ±0.005 273 0.4 -0.4 Poor-quality
June 20 19/23 A 0,006 277 0,009 ±0.009 277 observations.

to BD 282 -0,008 277 283 -0.007 ± 0,004 270 + 1,4 + 1,0 Sky clear,
Aug. 4 B 0.003 283 -0.003 ±0.006 283 hazy, and

1980 CD 276 -0.007 266 274 -0.005 ±0.1)02 260 +2.0 +2.5 very hazy.
C -0.003 277 -0.004 ±0.004 274 Sunspot cycle
D 0.006 293 0,004 -+0,004 288 maximum.

AD 274 0.002 275 274 0,004 ±0.002 276 -0.5 -0,6 Clear sky,
June 8 36/47 A -0.001 276 0.000 ± 0.002 276 Near sunspot

to 8D 280 -0.002 279 281 -0,001 ± 0.002 281 + 0.1 - 0.4 cycle maximum.
Aug. 7 B -0.003 281 -0.003 ±0.002 281 Discarded obs,

198I CD 271 0.003 275 271 0.006 ±0.002 277 -2,3 -2.I made during
C -0.004 277 -0.002 ±0.002 276 increased solar

D -0.004 282 -0.005 -+0.002 278 activity (see
text).

AD 270 -0.004 269 271 0.001 ± 0.003 271 0.2 - 0.3 Sky hazy.
July 31 11/13 A -0.01I 268 -0.008 ±0.003 288

to BD 277 0.000 277 279 0.002 ±0.002 280 -0.3 -1.1 Observation

Oct. 23 B -0.007 274 -43.007 ±0.003 273 quality
1984 CD 271 0.005 276 273 0.008 ±0.003 281 -2.9 -3,5 good.

C -0,002 272 -0.001 ±0.002 271 Near sunspot
D 0.007 266 -0.009 ±0.003 259 cycle mini-

mum.

AD 276 -(3.001 276 277 0,000 ±0,002 277 0.0 -0.5 Generally clear
June 10 13/14 A -0.008 276 -0,007 ±0.004 276 but some

to BD 281 0,000 281 284 -0.002 ± 0.002 283 + 0.4 - 1.0 haze.

July 11 B -0.007 279 -0,009 ± 0.003 280
1986 CD 276 0.001 277 277 0.002 ±0.001 279 -0.9 - 1.0 Sunspot cycle

C -0.006 277 -0.005 ±0.002 277 minimum.
D -0.007 276 -0,007 ± 0.002 273

AD 292 -0.001 291 292 0.000 -+0.002 292 0.0 0.2 Generally clear
May 20 36/40 A -0.002 292 -0.002 ±0.002 292 sky.

to BD 297 -0.002 296 300 -0.003 ±0.001 299 +0.6 -0.4 Excellent

July 9 B -0.003 296 -0.004 ±0.002 297 quality obs.
1987 CD 292 0.000 292 293 0.000 ±0.001 294 -0.2 -0.5 Sunspot cycle

C -0.002 293 -0,002 -+0.001 293 July 10, 1987
D -0,001 296 -0.002 ± 0.001 293 Calibration

scale.

*Percent errors in x are expressed for indicated x and /a - 2.2
÷Provisional N-tables used were those of August 26, 1976,
tfProvisional N-tables used were derived from instrument 83 standard lamp readings. N values assigned to the lamps August 28, 1976, and current
wedge density tables.
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Column 6 gives corresponding adjusted mean total ozone amounts, deduced after appli-
cation of the calibration corrections S of column 5. Note that, for direct Sun observations on AD

wavelengths--the standard procedure--the ozone values in columns 4 and 6 do not differ by

more than 1 DU. Columns 7 to 10 present ozone data obtained from calibrating by means of
standard lamps. In deriving the ozone values in column 7, the provisional N tables used were

those established from the optical wedge densities of instrument No. 83 current at the time of

calibration, and standard lamp N values assigned to the lamps on August 26, 1976. The ozone
amounts in column 10 are the corrected values, determined by application of the corrections S

given in column 8. For observations on AD wavelengths, the mean total ozone values in columns

4, 6, 7, and 10 of Table 4.6 do not differ by more than 2 DU.

The percentage errors in total ozone relative to the 1976 standard lamp calibration scale and to

the Dobson instrument August 26, 1976, calibration scale are given, respectively, in columns 11

and 12 of the table for indicated total ozone and for/z = 2.2, approximately the mean/z for the
series of observations. As indicated earlier, the August 26, 1976, calibration scale for instrument

No. 83 and the 1976 standard lamp calibration scale are essentially independent. From the
percentage error data given in columns 11 and 12, we conclude that the Dobson instrument No.

83 calibration scale for direct Sun observations on AD wavelengths has remained unchanged
between June 1972 and July 1987 to within about _+0.5 percent.

A calibration scale established on June 18, 1962, for Dobson spectrophotometer No. 83 at

Sterling, Virginia, based on direct Sun observations, yields NA - ND values that differ by only
0.003 from those given by a corresponding calibration scales based on N values for the standard

lamps of instrument No. 83 on August 26, 1976. This difference corresponds to a difference of 0.4
percent in total ozone for/_ = 2 and an ozone content of 300 DU, or about 1 DU between the two

calibration scales. Either of the scales is, therefore, suitable for use, with an uncertainty of less
than about _+1 percent relative to the August 26, 1976, calibration scale.

An analysis of errors associated with Dobson spectrophotometer calibration observations

indicates a collective uncertainty of not more than several tenths of 1 percent corresponding to

uncertainties in the air mass, the ratio of the actual and vertical path lengths of the solar beam
through the ozone layer, the solar zenith angle, the Rayleigh-scattering coefficients, and the

particle-scattering coefficients used for observations on AD wavelengths. Ozone absorption
coefficients specified for use with Dobson spectrophotometers are applicable at -44°C. At MLO,
the mean temperature in the region of the ozone maximum, determined from radiosonde

observations conducted during June-August 1958--1987, was about -48.4°C. Because ozone

absorption coefficients for the AD wavelengths increase with increasing temperature at a rate of

0.13%/°C, total ozone values computed at MLO must be increased by about 0.57 percent. The

radiosonde data also indicate a long-term temperature trend at Mauna Loa of about 0.05%/year,
which translates into a trend in effective ozone absorption coefficients, and therefore in total

ozone, of only about 0.006 percent per year. Shorter (3- to 6-year) time-interval temperature
variations, unaccounted for, lead to errors in ozone trend calculations of up to about 0.1 percent.

In an attempt to ascertain whether the extraterrestrial constants for the Dobson instrument

wavelengths vary during the course of the 11-year solar cycle, calibration observations were

scheduled at times of maxima and minima in sunspot numbers. No significant difference in

results (Table 4.6) was obtained for observations on AD wavelengths. Data obtained for the A

and D wavelengths in 1980, at the time of a maximum in sunspots, indicated an apparent need
for N-value corrections of about S + 0.006, but this result has been discarded because of known

systematic observer errors. In 1981, 9 half-days of calibration observations (of 47) were discarded

196



TOTAL COLUMN OZONE

following a marked temporary increase in solar activity about July 17. N-value corrections for AD

wavelengths computed for these observations were about +0.035. Because the need was

indicated for both positive and negative corrections that roughly cancelled, it is likely that the

required assumption of constant ozone for the half-days during which observations were made

was not valid in those periods. We tentatively conclude that if variations in the extraterrestrial

constants occur during the course of a solar cycle, the assumption of constant value over the cycle

most likely leads to errors in total column ozone not exceeding a few tenths of a percent, as
determined from observations on AD wavelengths.

The Dobson instrument No. 83 calibration observations made at MLO during 1972-1987 have

yielded a unique, precise total ozone data set that is separately useful for testing the calibration of
satellite instrumentation for the measurement of total ozone. These data have been used (see

Section 4.4) for the calibration of ozone measurements by TOMS aboard Nimbus-7 (McPeters

and Komhyr, 1988).

4.1.1.5 Reporting Procedures to Ozone Data for the World

The daily total ozone column measurements are reported by the individual stations to the

WMO-WODC and have been published since 1960 in ODW. The standard data report provides

the value of the total ozone content for that day, the local time of the measurement, the

wavelengths used (usually AD), and the radiation source: direct Sun, direct Moon, blue zenith

sky, or one of five classifications of zenith cloud cover. In most cases, the data submitted by the
stations for publication in ODW do not include corrections for periodic instrument calibrations or

for intercomparisons with the world primary or regional standards, despite repeated recom-
mendations by WMO (e.g., Ozone Report Nos. 9 and 12). Retroactive revisions of station data in

ODW are very rare, even though later recalibration has demonstrated instrumental drift. (In

almost all instances, essentially no budgetary provision has been made for personnel to carry out

such reevaluations.) The uncritical use of published data can result in erroneous statements and

major disagreements in apparent trends, even between stations located in the same macro-

circulational region. As one of many examples, Figure 4.2 shows a sharp disruption in 1976-1977

in the Mauna Loa data published in ODW. (The regular Mauna Loa data are not recorded with

instrument No. 83, which is normally in Boulder, Colorado, and is sent to Mauna Loa for

periodic recalibration.)

The Dobson spectrophotometers are intended to be checked at least monthly with mercury-
lamp tests, which monitor the spectral sensitivity response to a standardized exposure to UV

radiation. The hoped-for result is that these monthly lamp tests indicate constancy of sensitivity;

otherwise, the tests should catch any problems or mishaps that might have occurred, such as a

change in the wavelength selection by the instrument slits. The extended series of monthly lamp

tests can provide information pointing either to an abrupt change or to a steady change in

instrument response to the UV test. However, the lamp response is not necessarily linearly
related to the absolute sensitivity of the Dobson instrument for ozone, so that while the lamp test

is a test of stability, the changing lamp values alone do not provide a quantitative correction

when some change is indicated to have occurred. The quantitative aspect is resolved through

recalibration. There is no set pattern to the frequency with which the instruments are calibrated,

with some stations performing regular calibrations and some not. The individual Dobson

instruments are also occasionally recalibrated by direct comparison at a common location with

either the world primary standard (instrument No. 83) or with one of the secondary standards.

Sometimes, recalibration produces only a small adjustment, but, occasionally, a correction of

several percent is indicated. International comparisons of a few dozen Dobson instruments in
1974, 1977, 1978, 1979, 1984, and 1986 indicate average deviations of the order of only 2 percent.
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Figure 4.2 Total ozone monthly deviations at Mauna Loa (1957-1986). Calculated from the data published
in Ozone Data for the World, showing the apparent disruption in the data in 1976-1977.

The usual procedure after calibration is the immediate installation of the new N-values, with

no retrospective reevaluation of any earlier data--including the measurements made according

to the old calibration scale only a short time before. In principle, such reevaluation is done by the
individual stations and reported for printing in ODW. In practice, however, such published
reevaluations are rare. It is worth emphasizing that, in accordance with the International Council

of Scientific Unions (ICSU) principles governing the world data centers, the authority for any

data adjustment resides with the individual reporting stations. Accordingly, no attempt is now
made by the WMO-WODC to adjust data taken prior to recalibration, and the data are left as

originally reported by the stations, with any such discontinuity intact. In almost all instances,

such apparently obvious corrections are not routinely applied in the ozone data submitted for

publication in ODW because the heavy workloads for other duties supersede in priority such
reevaluations. Such corrections can be done if personnel time is available for such recalculations,

but most ozone stations have not, in practice, been able to do any reevaluation of previously
published data.

Furthermore, not all recalibrations are communicated for publication in ODW, and the

information contained in routine lamp tests or other instrumental checks typically remains with
the individual station records and is available only with difficulty to anyone else. Questions can

then arise about the possible influence of such calibration changes upon trends in ozone
concentrations inferred from the published data. The simplest question follows from the

statement that, in most instances, the instrumental change that brought about the discrepancy
noted during recalibration probably did not occur abruptly just prior to the recalibration. We

have attempted in this chapter to revise the ozone data as published in ODW to take into account

the corrections needed for these data, but not yet carried out by the individual stations. The bases
for our corrections are outlined in Section 4.3.

4.1.2 Filter Ozonometer (M-83)

Since 1957, routine ground-based total column ozone measurements have been made at more

than 40 stations in the USSR (see Table 4.7 and Figure 4.3) using a filter ozonometer instrument
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Table 4.7 USSR M-83 Ozone Stations.

No. WMO Index Station Latitude (°N) Longitude (°E)

1 37500 Abastumani 41.45 42.50 a

2 36870 Alma-Ata 43.14 76.56 a

3 35746 Aralskoe More 46.47 61.40

4 22550 Archangelsk 64.35 40.30
5 38880 Ashkhabad 37.58 58.20 a

6 32150 Bolshaya Elan (Sakhalin) 46.55 142.44 _
7 30054 Vitim 59.27 112.35

8 31960 Vladivostok 43.07 131.54 a

9 34560 Volgograd 48.35 45.43
10 34122 Voronez 51.42 39.10

11 35700 Gurev 47.01 51.51

12 20674 Dikson Island 73.30 80,14 _

13 38836 Dushanbe 38.35 68.47 a

14 23274 Igarka 67.28 86.34
15 30710 Irkutsk 52.16 104.21 _

16 35394 Karaganda 49.48 73.08
17 33347 Kiev 50.24 30.27 _

18 21432 Kotelnyj Island 76.00 137.54

19 29574 Krasnoyarsk 56.00 92.53 _

20 28900 Kuibyshev 53.15 50.27 a
21 26063 Leningrad 59.58 30.18 a'b
22 33393 Lwow 49.49 23.57

23 25551 Markovo 64.41 170.25

24 27612 Moscow 55.45 37.34 _

25 22113 Murmansk 68.58 33.03 a

26 25913 Nagaevo 59.35 150.47 _
27 31369 Nikolaevsk-Na-Amure 53.09 140.42

28 33837 Odessa 46.29 30.38 a

29 24125 Olenek 68.30 112.26
30 28698 Omsk 54.56 73, 24 _

31 32540 Petropavlovsk-Kamchatskii 52.58 158.45
32 23418 Pechora 65,07 57.06

33 26422 Riga 56,58 24, 04 a
34 28440 Sverdlovsk 56.48 60.38 _

35 36177 Semipalatinsk 50.2i 80.15
36 30692 Skovorodino 54.00 125,58

37 37545 Tbilisi 41.41 44.57

38 21825 Tiksi 71.35 128.55

39 24507 Tura 64.10 100,04

40 33976 Feodosij a 45.02 35,23 a

41 23933 Hanty-Mansijsk 60.58 69.04
42 20046 Heiss Island 80.37 58.03 a

43 34646 Cimljansk 47.44 42.15
44 38687 Cardzou 39.05 63.36

45 24959 Yakutsk 62.05 129.45 _

a Data published
b Dobson station

and used in the formation of regional averages
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Figure 4.3 Geographical distribution of the M-83 filter ozonometers in the USSR (the numbers correspond
to those given in Table 4.7).

designated as type M-83 (and not to be confused with the Standard Dobson ozone spec-

trophotometer, which was the 83rd instrument manufactured of the Dobson type). The filter-

type instrument is based upon the same principle as the Dobson spectrophotometer in using

differential absorption of UV radiation in the 300-350 nm Huggins band of ozone. The M-83
instrument, however, uses two broadband filters and measures the relative attenuation of the

solar UV radiances either directly from the Sun or indirectly from the zenith sky (Gustin, 1963).

Direct intercomparisons between M-83 filter instruments and Dobson spectrophotometers

prior to 1971 (Bojkov, 1969b) revealed that the M-83 recorded 6 percent less ozone when the

observations were restricted to # <1.5, and 20 percent to 30 percent more ozone when data were

taken for # >2.0. A strong dependence on turbidity was also detected, with 9 percent to 14

percent higher ozone readings when the surface visibility was less than 5 km. These strong
deviations for/z >2.0 make very uncertain many of the high-latitude measurements in the USSR.

Improved filters were introduced into the M-83 instrument starting in 1972-1973 (Gustin,
1978). The new filters have maximum transmittance at 301 nm and 326 nm, and their bandpasses

are less than those in the earlier version: 22 nm (291-312 nm) and 15 nm (319-334 nm).

Comparison of Nimbus-4 BUV satellite overpasses over M-83 stations in the USSR demon-
strated a standard deviation of about 50 DU before 1973 and about 25 DU afterward. The

Nimbus-4 BUV overpasses of Dobson stations maintained a standard deviation of about 17 DU

during the 1970--1977 lifetime of the satellite.
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A much newer, reportedly improved instrument designated as M-124 has been installed in

many stations since 1986 (Gustin et al., 1985), but no ozone data have been reported yet for this

instrument. No trend data with the M-124 can be expected for about a decade unless the data can

be satisfactorily cross-calibrated with the M-83 data from the same location.

4.1.3 Brewer Grating Spectrophotometer

An improved optical and electronic scheme for observations of total ozone was proposed by
Brewer (1973) based in part on earlier developments by Wardle et al. (1963). The instrument has

one diffraction grating (1,800 lines per ram) and five slits corresponding to five wavelengths in

the 306-320 nm spectral band. The resolution is 0.6 nm as compared to 0.9-3.0 nm in the Dobson

instrument. Combination of the data from all five wavelengths provides information about the

total column content of SO2, a potential interference for the Dobson measurements in

SO2-polluted air.

The Atmospheric Environment Service of Canada has been developing and testing the

Brewer ozone spectrophotometer for the purpose either of replacing or supplementing the

current Dobson network. Intercomparisons between the Brewer and Dobson instruments at

Toronto have shown a difference in total ozone within + 1 percent for direct-Sun observations.

However, some questions about the stability of the Brewer instrument with respect to calibration

and spectral sensitivity have been raised following comparisons of the Dobson and Brewer
instruments in the Federal Republic of Germany at Hohenpeissenberg (K6hler and Attmann-

spacher, 1986) and in the USA at Wallops Island (Parsons et al., 1982). At this time, no plans for

the worldwide utilization of the Brewer instrument have been announced, pending further field

tests of the instrument in several regions of the globe. Brewer instruments are currently known

to be operated at several Canadian stations (Kerr et al., 1988, 1988a), Salonika (Greece),

Norshopping (Sweden), and Hohenpeissenberg. Only the data from Hohenpeissenberg have

been published in ODW. The longest Brewer record commenced in 1983, so a long-term

"Brewer-only" analysis cannot yet be carried out.

4.1.4 Measurements of Vertical Ozone Distributions: Umkehr and Ozonesondes

The measurements with the Dobson spectrophotometer are based entirely upon the ability of

molecular ozone to absorb UV radiation in the Huggins band, and have produced the only

long-term record of total ozone in the atmosphere measured by ground-based stations. The

vertical distribution of ozone within the atmosphere can be deduced through the Umkehr

technique with the Dobson spectrophotometer, and has been routinely applied at about a dozen
Dobson stations. The preferred time of day for Dobson instrument measurements of total ozone

is local noon, for which the slant path of the solar radiation is the shortest. For directly overhead

Sun (/, = 1.0) and for angles corresponding to > = 2 or 3, the radiation reaching the instrument is

overwhelmingly the direct radiation from the solar source. However, as the Sun approaches the

horizon, the importance of scattered radiation relative to direct radiation continues to increase.

Under these conditions, the altitude of the scattering process relative to the altitude of absorption

of ozone becomes important, and the ratio of wavelengths reaching the Dobson instrument

begins to carry information about the altitude distribution of the ozone within the stratosphere.
The ratio of radiation intensity (longer wavelength divided by shorter wavelength, e.g., 332.4

nm and 311.45 nrn for the C pair) is expected to increase steadily with increasing slant path for the
direct radiation because of the larger number of molecules of ozone available for absorption

along the path. The radiation received from the zenith sky presents a mixture of scattering from

various altitudes. When the Sun reaches a zenith angle of about 86 °, the altitude dependence of
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the scattering process causes the intensity ratio to pass through a maximum and then to decrease

again. Continued measurement beyond a zenith angle of 90 ° can lead to a minimum in the
radiation intensity for the two wavelengths, and then an increase again. Careful evaluation of

the detailed shape of such graphs of ratios of radiation intensity versus solar zenith angle

provides information about the vertical distribution of the ozone in the stratosphere. The

technique was developed in 1931 by G6tz (1934); it is known as the Umkehr procedure from the

German word for reversal because of the existence of a maximum in the graph of intensity versus
zenith angle.

Entirely separate data on the vertical distribution of ozone over particular stations have also

been obtained through the use of ozonesondes, balloonborne devices that utilize the oxidizing

capability of ozone to cause a measurable chemical change. Under the usual operating condi-

tions, the reliability of the ozone measurements by the sondes is checked by its degree of

agreement, when integrated, with the total amount of ozone measured nearly simultaneously by

a nearby Dobson instrument (Brewer and Milford, 1960; Komhyr, 1965; Kobayashi and Toyama,
1966).

Ozone profile data are covered more fully in Chapter 2.

4.2 SATELLITE MEASUREMENTS OF TOTAL OZONE

The first long series of measurements of total ozone from space were made in 1970 from the

Nimbus-4 satellite by the BUV spectrometer. This instrument was capable of daily measure-
ments covering the entire sunlit portion of the globe--i.e., all but the area within the 24-hour

polar darkness. The Backscatter Ultraviolet (BUV) instrument worked well for about 2 years; it
then encountered problems that permitted far fewer daily ozone readings, which continued into
1977.

The Nimbus-7 satellite was launched on October 23, 1978, with two instruments on board,

each capable of monitoring total ozone from all of the sunlit globe. TOMS and the SBUV

spectrometer are briefly described here. A detailed description of the TOMS instrument is given
in Chapter 2. The SBUV instrument provides measurements of both total ozone and the ozone

vertical profile up to 50 km altitude, but only in the nadir (i.e., along the satellite groundtrack).

The TOMS instrument measures only total ozone, but it is not limited to the nadir and, by

sweeping through a series of slant angles, it provides a much denser pattern of daily measure-
ments of total ozone. Data from the other satellite instruments that measure ozone are not

presently suitable for a discussion of possible changes in total ozone concentrations. Some

instruments measure only ozone profiles, while others had only a few months of good data at the
time of this report.

4.2.1. Total Ozone Mapping Spectrometer (TOMS)

The Total Ozone Mapping Spectrometer on the Nimbus-7 satellite is designed to provide
daily global maps of Earth's total ozone by measuring sunlight backscattered from the Earth-

atmosphere system in six wavelength bands, each with a 1.0 nm bandpass: 312.5, 317.5, 331.2,

339.8, 360, and 380 nm. The two longest wavelengths are insensitive to atmospheric ozone and

are used to measure surface reflectivity, while the remaining wavelengths are used in the

inference of total ozone concentrations. TOMS contains a single monochromator with a scanning

m
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mirror to measure backscattered radiation at 35 observation angles perpendicular to the orbital

plane every 8 seconds--i.e., as many as 378,000 ozone data points per day. The angular swath

from each satellite orbital track extends far enough to provide overlap with both the preceding

and succeeding orbital tracks, and provides a complete global map of total ozone daily, omitting
only the area of complete polar night.

Dave and Mateer (1967) demonstrated the feasibility of determining atmospheric ozone from

measurements of backscattered solar UV radiation. The UV radiation received by the TOMS

instrument in the total ozone wavelength bands consists of solar radiation that has penetrated

the stratosphere and has been either scattered back by the dense tropospheric air or reflected by

Earth's surface. Ozone, concentrated mostly in the lower stratosphere, lies above the region in

which the radiation is backscattered, and acts as an attenuator of this radiation. By determining

the differential attenuation as a function of wavelength, the amount of ozone above the reflecting

surface can be accurately determined. More than 90 percent of the ozone is located above the

tropopause, while all the clouds, most of the aerosols, and 80-90 percent of the atmosphere are

located below it. This almost complete separation of the ozone above the scatterers and reflectors
minimizes errors caused by the ozone vertical profile shape or by clouds, aerosols, and other

tropospheric variables. However, the instrument has a lessened sensitivity to that fraction of

ozone that lies in the troposphere in the midst of the scattering agents. The standard algorithm

(see Chapter 3) for calculation of total ozone from the recorded satellite data includes the addition

of a small amount of ozone to compensate for this lessened sensitivity to tropospheric ozone. The

magnitude of this computed tropospheric correction is fixed from the average of other, non-
satellite ozone observations, and has been assumed to be invariant between 1978 and 1988.

Further, no allowance is made in the correction term for possible seasonal or latitudinal
differences in tropospheric ozone. The satellite instrument is, therefore, relatively insensitive to

any trends in ozone concentration with time that might occur in the lowest levels of the

atmosphere.

Accurate ozone measurement is facilitated by the availability of simultaneous measurements

with several wavelength pairs. Both TOMS and SBUV are programmed to infer total ozone using

an A wavelength pair (312.5/331.2 nm), a somewhat less sensitive B wavelength pair (317.5/331.2

nm), and, at very large solar zenith angles, a C wavelength pair (331.2/339.8 nm). The use of
wavelength pairs completely removes the effect of any wavelength-independent component of

errors such as instrument calibration or aerosol scattering. The conversion of relative radiances at

two different wavelengths into total ozone depends upon the differences in ozone absorption
coefficients, as described earlier for the Dobson instruments. However, the total ozone data from

the two instruments on Nimbus-7 have been calculated with the more recent Bass-Paur (1985)

ozone absorption cross-sections. (The initially reported ozone data inferred from Nimbus-7
preceded the Bass-Paur coefficients and were calculated differently, but all of the data have now

been calculated with a consistent algorithm based on the Bass-Paur coefficients, and the

archived data set now contains only the data from this algorithm.)

Ozone is inferred from the UV backscattered albedo, which is defined as the ratio of the
backscattered radiance to the extraterrestrial solar irradiance. The backscattered radiance is

measured at each of the six wavelengths for each observation. The solar flux at each of these
wavelengths is recorded once each week by measuring the solar radiation arriving from a ground

aluminum diffuser plate deployed into direct view of the Sun. The use of the ratio of intensities

from Earth and from the diffuser plate eliminates the effects of the solar spectrum, and the

weekly remeasurement of solar irradiance tracks any changes in instrument throughput during

the life of TOMS. One of the most significant instrumental changes in the 10-year life of
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Nimbus-7 has been the degradation of this aluminum diffuser plate from its intermittent
exposure to direct solar UV bombardment (see Chapter 2).

The orbit of Nimbus-7 determines the possible ozone coverage by TOMS. The satellite is in a

Sun-synchronous retrograde polar orbit that crosses the Equator at approximately local noon on

each orbit. The orbital inclination necessary to provide Sun-synchronous precession is such that

the satellite reaches a maximum latitude of 80 degrees in each hemisphere. However, the

cross-track scanning of the TOMS instrument permits ozone measurements all the way to the

pole as long as it is sunlit. True pole-to-pole ozone measurements are not obtained except near
equinox because scattered sunlight is necessary for the measurement of ozone, and data cannot

be obtained in winter at high latitudes. Total ozone is measured to a maximum solar zenith angle
of 88 degrees.

Total ozone data from TOMS are available continuously since November 1978. The proc-

essing of the recorded UV radiances into measurements of total ozone is currently on a
near-real-time basis, with daily global maps available approximately 3 weeks after measurement.

The data are archived at the National Space Science Data Center (NSSDC) at the Goddard Space
Flight Center (GSFC).

4.2.2 Solar Backscatter Ultraviolet Spectrometer (SBUV)

The Solar Backscatter Ultraviolet Spectrometer, also on the Nimbus-7 satellite, is similar to
TOMS but is designed to measure ozone profiles as well as total ozone. The instrument is an

improved version of the BUV, flown on Nimbus-4 in 1970. It contains a double monochromator

with a highly linear detector system that allows it to measure UV radiation over a dynamic range

of seven orders of magnitude. SBUV and TOMS share the same ground aluminum diffuser plate
for the weekly measurement of the solar irradiance, although the instruments do not look at

precisely the same areas of the diffuser plate. Both SBUV and TOMS incorporate two important

improvements over the BUV. First, a mechanical chopper allows accurate subtraction of any dark
current signal so that measurements can be made even in the presence of energetic particles.
Second, the diffuser plate is protected except during solar flux measurement in order to reduce

the rate of degradation. Finally, SBUV has an additional improvement over BUV through a

continuous scan mode that measures the complete UV spectrum from 160 nm to 400 nm in 0.2
nm steps.

The important difference in the total ozone measurements provided by TOMS and SBUV is
that SBUV measures ozone only along the orbital track, while TOMS scans between tracks. The
TOMS field of view (FOV) is 40 km x 40 km at nadir, while the SBUV FOV is 200 km x 200 km.

SBUV measures the solar backscattered radiance every 32 seconds (i.e., as many as 2,700 data

points per day) at 12 wavelengths, with a bandpass of 1.1 nm: 255.5, 273.5, 283.0, 287.6, 292.2,

297.5, 301.9, 305.8, 312.5, 317.5, 331.2, and 339.8 nm. The wavelengths from 255.5 nm to 305.8

nm are used to infer an ozone profile, while the four longer wavelengths, which are identical to

those in TOMS, are used to infer total ozone. Instead of separate, and still longer, wavelength
channels to determine scene reflectivity, SBUV uses a photometer set at 343 nm to measure

reflectivity coincident with each monochromator scene in order to compensate for satellite

motion. Except for differences caused by these slight instrument variations, the algorithms used
to infer total ozone for TOMS and SBUV are identical.
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Total ozone and ozone profile data are available from SBUV for November 1978 through

March 1988. In February 1987, the SBUV began to experience a high rate of loss of chopper

synchronization--i.e., a lack of coincidence between the insertion of the dark current chopper

and the recording of the signals into the correct time bins. The effect of this loss was to introduce

an apparently random 2 percent noise into the radiance measurement, degrading the accuracy of

the inferred ozone profiles in particular. The SBUV data are also archived at the NSSDC.

4.3 USE OF EXTERNAL DATA TO DIAGNOSE PROBLEMS AT GROUNDSTATIONS

Examination of the published ozone data from a particular ground-based station sometimes

brings to light apparent incongruities within the full time series. For instance, the total ozone

values recorded in ODW for Mauna Loa have been deseasonalized and plotted in Figure 4.2; a

step in the mean ozone level appears sometime during 1976 or 1977. For this report, the total

ozone records of about 30 stations have been examined for internal consistency and for external

consistency with data from other sources. For the period from November 1978 to December 1986,

every ground-based total ozone measurement can be compared with the total ozone measured

by TOMS when the satellite was overhead on that same day. The search for data incongruities is

more difficult prior to November 1978, but comparisons with total ozone data from proximate

stations and with the recorded local stratospheric temperatures at the 100 millibar level have
revealed numerous instances when Dobson recalibrations have occurred but have not been

reported to the ODW. The approximate dates of such discrepancies were noted, and the stations

were asked whether a recalibration had taken place at that time and, if so, the magnitude of the

calibration change. The total ozone data were revised only when information regarding the

operation of the instruments was available. These diagnostic tests of the quality of the total ozone

data brought to light many more recalibrations than would have been detectable by examining
each ozone record in isolation.

4.3.1 Comparisons of Ground-Based and Satellite Measurements

The existence of two entirely separate systems that simultaneously measure total ozone

provides an excellent opportunity for the detection of flaws in either system through the
comparison of overlapping observations. Because the satellites orbit Earth in less than 2 hours,

an overpass not too far from each groundstation occurs daily. Such satellite overpasses of

groundstations took place during 1970-1972 with the BUV ozone detector on Nimbus--4, and

since November 1978 with the TOMS and SBUV instruments on Nimbus-7. The nearest daily

overpass is geographically much closer with the TOMS system because, unlike SBUV, which

measures total ozone only directly in the nadir, TOMS also provides ozone data for many points

situated at oblique angles to the precise satellite path. The density of TOMS ozone measure-
ments over Hawaii is illustrated in Section 4.4.2. An example of a series of TOMS-Dobson

comparisons for the Arosa groundstation is shown in Figure 4.4. The center panel contains a plot

of the ozone measured by the Dobson instrument at Arosa; the bottom panel shows the TOMS

measurement of total ozone closest to Arosa each day, usually within 1 degree latitude and

longitude; and the top panel plots the percentage difference between the two ozone measure-

ments. Examination of the ozone values themselves (lower two panels) shows that both

instruments track the large annual variation in ozone at 47°N latitude very well. The percentage-
difference plot (upper panel) reveals differences that would not be clear in the individual ozone

plots. The small annual modulation in the difference plot is usually interpreted as caused by a

minor scattered light problem in the Dobson instrument that becomes apparent only when the
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Figure 4.4 The top panel shows the percentage difference between measurements of the Dobson Spec-
trophotometer and the TOMS instrument at Arosa, Switzerland. The middle and bottom panels show the
actual measurements of the Dobson and the TOMS instruments, respectively.

ozone is recorded with the large solar zenith angle observations necessary in midwinter at

high-latitude stations• The major value of such comparison plots here is that abrupt changes in
the record of an individual groundstation can be clearly detected.

Plots of the deviations at each groundstation from the first year of TOMS operation (Fleig et
al., 1982) were published by the WMO-WODC, and other comparisons of the same data versus

selected surface stations were made by Bhartia et al. (1984) and Fleig et al. (1986a). The TOMS

data from 1979 to 1982 were further used in assessing the relative quality and performance of the

Global Ozone Observing System total ozone measurements (Bojkov and Mateer, 1984b). Corn-
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pletely reevaluated TOMS data, applying the Bass and Paur (1985) ozone absorption coefficients,

were recently provided by the Nimbus-7 processing team (Fleig et al., 1986a; Bhartia et al., 1988).

With a sufficiently large number of comparisons, the effects of random errors should approach

zero, leaving only the systematic bias. A systematic bias is always present because the ozone

results from the groundstations, reported on the basis of the Vigroux ozone absorption co-

efficients, are always higher by 3-4 percent than the total ozone amounts calculated with the
Bass-Paur coefficients.

In principle, either the ground-based or the satellite system could be assumed to be the

standard, and the other system the one of uncertain quality to be tested against it. In practice,
both systems have potentially serious errors that raise questions about the validity of the data

reported from that system. Fortunately, the primary flaw for the ground-based system has a very

different structure from the major flaw of the satellite system, so that useful intercomparisons
can be made.

The chief uncertainty in ozone determinations with the satellite systems is the slow, relatively

steady deterioration in the diffuser plate used as the calibrating agent for converting the various
relative wavelength readings into absolute amounts of ozone (Chapter 2). The absolute amount

of solar UV received from the diffuser plate has obviously diminished substantially at all

wavelengths during the decade of operation of Nimbus-7 because of the diffuser plate deg-

radation. However, the algorithm for converting UV radiances to total ozone is dependent

primarily upon the ratio of radiances at two wavelengths rather than upon the absolute values,

and was intended to compensate fully for the diffuser plate degradation. Moreover, this

deterioration has occurred over a period of almost 10 years and has basically not shown erratic

behavior on short time scales such as 1 week or 1 day.

Intercomparisons of satellite readings versus those of two groundstations on the same day

can safely be assumed to have been made with an instrument having the same response

characteristics for both overpasses. Five years later, the sensitivity of the satellite instrument is

undoubtedly different, but effective intercomparisons can again be made for same-day over-
passes. The satellite instruments can, therefore, provide accurate assessments of the ground-

based measurement capabilities as long as this use as a transfer standard is restricted to short

time periods of a few days, over which the degradation of the satellite diffuser plate is negligible.

In contrast, the most prominent flaw of the ground-based systems is the variability in the

operating procedures used at each station. Although the individual Dobson instruments were
very nearly identical when manufactured, their conditions of maintenance, repair, and general

upkeep have diverged widely since installation. The training and supervision of operators can

also be very different, so that stations with superficially identical equipment can provide ozone

data of very widely different quality.

Given the distinctive characteristics of the possible flaws in the two systems, a "boot-

strapping" operation becomes possible, with the result that the combined satellite-ground
ozone data set is substantially better than either taken alone. The daily satellite-ground inter-

comparisons are used to provide tests of the quality of the data reported by individual ground-

stations, including the detection of suspect operating periods, and in principle allow correction

and refinement of the ground data. A selected set of "good" groundstations can then be used to
calibrate the slow deterioration of the satellite instrument and permit absolute comparisons of

satellite data recorded a few years apart. These ground-satellite interactions are described now

in greater detail.
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4.3.1.1 Allowing for a Drift Between TOMS and the Groundstations

Comparisons have been made between the daily-mean total ozone concentrations measured

at 92 surface-based stations (71 Dobson and 21 M-83 instruments) and the total ozone calculated

from direct overpasses by the Nimbus-7 TOMS, from November 1978 to December 1985 (Bojkov
et al., 1988). The satellite overpasses always occur at local noon, while the surface-based data are

usually averaged from data collected symmetrically around local noon. The time difference

between the satellite and ground observations is normally 3 hours or less.

The overpass analysis first established a basic Dobson-TOMS reference curve of monthly
values of the network average bias, expressed as the Dobson ozone value minus the TOMS

ozone divided by the Dobson ozonei(Dobson-TOMS)/Dobson. These values were calculated

from the data provided by the 74 stations that reported most regularly over the period of satellite
operation. Stations with short records, serious drifts (greater than 1 percent per year), or sudden

steplike increases or decreases were excluded. The data for individual months from ground-

stations were included only if (a) at least 13 daily station vs. TOMS comparisons were available

during the month, (b) the standard deviation of the daily differences contributing to the monthly
mean difference was less than 5 percent, and (c) the absolute difference between the station
monthly mean difference and the overall network mean difference was less than twice the

standard deviation of the network mean. Application of these criteria each month reduced the

number of participating stations in the monthly evaluations to a variable number between 50 and
65. These criteria for disregarding some overpasses were intended to eliminate the least

satisfactory parts of the ground-based total ozone data set, including rejection of some parts of
the data from stations that operated satisfactorily in other months.

The basic reference comparison curve, based on all types of ground measurements (direct
Sun, zenith sky, etc.) is graphed in Figure 4.5, and the results are summarized as 6-month
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Figure 4.5 Monthly mean biases (Dobson-TOMS)/Dobson and their respective intrastation standard
deviations ( _+lo-). The solid curve is the basic reference curve based on all types of ground measurements.
Positive values mean satellite underestimation of the total ozone amount relative to that measured at well-run
groundstations (see text for inclusion of particular stations). The vertical markers indicate the position of the
end (December) of the previous year.
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averages in Table 4.8. Also included in Table 4.8 are the results found when only the direct-Sun

ground-based measurements were used in the comparisons. It is clear that the set of com-

parisons made with only direct-Sun readings is quite similar to the results using all total ozone
data. The upper and lower curves of Figure 4.5 indicate the one standard deviation limits for the

mean reference curve. In most cases, these fall between 2 percent and 2.4 percent. The total drift

is about 3.5 percent, varying from -1 percent in 1978 to + 2.5 percent in 1985, indicating that the

ozone reported by the satellite lessens with time relative to the ground-based observations. A

linear regression to the data indicates that the satellite ozone needs to be increased by 0.42 +_0.02

percent per year to compensate for the TOMS drift, essentially the same as that reported by Fleig

et al. (1986a), based on comparison with 41 selected Dobson stations. However, the basic

reference comparison curve does not appear to be smoothly linear in its change, but instead is

characterized by initially increasing values, followed by a relatively flat plateau close to the zero
line from mid-1979 through mid-1981. A further slow rise until early 1984 is followed by a final

period of more rapid rise through the end of the record used in the analysis. After correction for

the average bias for each individual month, the standard deviation of the mean of all monthly

mean differences for the 7-year period is 0.38 percent when all observations were considered and

0.43 percent when only direct-Sun readings were taken into account. The standard error of 0.02

percent from the linear regression is probably an underestimate of the yearly error in the drift
coefficient.

Table 4.8 Six-Month Average Bias (Dobson-TOMS)/Dobson Centered at February 1 and August
1 of Each Year as Deduced From All and From Only Direct-Sun Observations.

All Six-Month Direct-Sun Six-Month

Difference Difference

1979

Feb. -0.90 0.72 -1.11 0.79

Aug. --0.18 0.23 --0.32 0.18
1980

Feb. 0.05 0.10 -0.14 0.45

Aug. 0.15 -0.06 0.31 --0.27
1981

Feb. 0.09 0.41 0.04 0.38

Aug. 0.50 -0.11 0.42 -0.27
1982

Feb. 0.39 -0.05 0.15 0.23

Aug. 0.34 0.26 0.38 - .01
1983

Feb. 0.60 0.76 0.37 0.72

Aug. 1.36 0.11 1.09 0.15
1984

Feb. 1.47 0.17 1.24 0.27

Aug. 1.64 0.38 1.51 0.20
1985

Feb. 2.02 0.27 1.71 0.83

Aug. 2.29 2.54

Bias is in percent. The 6-month differences between the average biases indicate a nonuniform drift.
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Possible factors that might contribute to this drift between TOMS and Dobson ozone

measurements were discussed by Fleig et al. (1986b). They include residual uncorrected drift in
the SBUV/TOMS diffuser plate, an overall drift in the Dobson network, and differences in the

response of the two systems to actual changes in the amounts of tropospheric ozone or
ozone-simulating pollutants such as SO2. Fleig et al. concluded that drift in the Dobson network

was unlikely because their TOMS-Dobson drift appeared to be independent of any objective
method of weighting the individual stations for data quality. Increases over time in the con-

centration of tropospheric ozone or SO2 may contribute to the drift because the satellite systems

respond only partially to changes near ground level either in ozone or in interfering absorbers,
while the Dobson system responds fully (Komhyr and Evans, 1980). The influence of SO2 on

ground-based total ozone measurements has been shown to be very small except in heavily
polluted urban areas (Basher, I982).

Recent studies of ozonesonde observations (Angell and Korshover, 1983b; Bojkov and
Reinsel, 1985; Logan, 1985; Tiao et al., 1986; and Bojkov, 1988a) do indeed indicate an increase in

tropospheric ozone at slightly less than 1 percent per year, while surface ozone measurements

suggest 1 percent to 1.5 percent yearly increases over the past two decades (Logan, 1985; Bojkov,

1987a). However, because tropospheric ozone contributes only about 10 percent of the total

ozone column, an increase of 1 percent per year in tropospheric ozone would correspond to an

increase of only 1 percent per decade in total ozone, substantially less than the 3.5 percent

change found in less than 8 years. Because the satellite systems are not completely insensitive to
tropospheric ozone, the changes in tropospheric ozone appear to be only a minor part of the

observed drift between the Dobson and satellite systems, with the major contributor the residual
uncorrected drift in the satellite diffuser plate.

Once determined, the average biases between TOMS and the groundstations were calculated

as monthly averages and removed from the differences for each station. In the subsequent
illustrations in Section 4.3, this overall bias has been removed from the individual station record.
In this manner, the TOMS instrument is used as a transfer standard between individual

groundstations, assists in evaluation of the quality of the data for each, and in particular allows

comparison of data at that station relative to the other groundstations on a month-by-month

basis. Furthermore, the 7-year period of continuous data permits identification of time-

dependent changes in the record from any individual station. Figure 4.6 (note the expanded

vertical scale relative to other similar figures) plots the monthly mean (Dobson-TOMS)/Dobson
differences after the removal of the monthly biases identified in Table 4.8. (The total data set

again includes some ozone measurements that were excluded from the average bias deter-
mination, as outlined earlier.) The course of the monthly mean differences lies within the + 0.6
percent band.

A few details can be identified:

• In 7 years, only 3 individual months (each an October) showed means significantly

exceeding the 0.6 percent difference range; the largest positive monthly differences (greater
than 0.4 percent) occur from September-December.

• June and July show the largest negative differences (-0.15 percent and 0.29 percent), which

is a possible reflection of the strong/, dependence (relative solar slant path) exhibited by the
instruments at many stations.
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Figure 4.6 Monthly mean (Dobson-TOMS)/Dobson differences after the monthly biases have been re-
moved. Stations where the _ of the monthly mean is less than 5 percent have not been included. The o_of the
monthly averaged values is in most cases between 2 and 2.4 percent, and thus out of scale (note the
expanded vertical scale relative to other similar figures).

• The standard deviations of the mean of the individual months show a small but well-

pronounced annual dependence. The months with less than 0.30 percent are February-
August; the smallest, 0.12 percent, occurs in February. September-January have _ greater

than 0.38 percent, with the greatest value, 0.55 percent, occurring in October.

More than two-thirds of the 71 Dobson stations have less than 2 percent difference versus the

network average estimated via TOMS for the entire 7-year period, as shown in the diagram in

Figure 4.7. Only 20 percent of the stations have a difference greater than 3 percent. These

statistics imply relatively good performance of two-thirds of the Dobson stations, while con-
firming stability in the short-term performance of the TOMS superimposed on the long-term

drift. On the lower panel (Figure 4.7) the same plot for the 21 M-83 stations shows that only half

fall within the good-performance category (less than 2 percent), and nearly 30 percent of them

have differences larger than 3 percent.

Only 12 percent of the stations (seven Dobson and four M-83 filter) show absolute differences

versus TOMS greater than 4 percent. These stations (with the percentage difference for TOMS

versus their direct-Sun observations in parentheses) are (a) Dobson stations: Casablanca (-9.7),

Cairns (-7.2), Hobart (-5.8), Brisbane (-5.7), Syowa (-5.7), Mauna Loa (-5.5), and Arosa (-4.8); and

(b) M-83 stations: Heiss Island (9.6), Kuybishev (4.9), Dushanbe (4.6), and Alma Ata (4.0). In the
case of Mauna Loa, for instance, an adjustment of about 2.9 percent is needed to allow for the

tropospheric ozone sensed by TOMS, averaging its response over a wide oceanic area, but not by

the mountaintop Dobson instrument (at 3400 meters). Similar terrain-height-induced adjust-

ments of about 0.8 percent for Arosa and -0.6 percent for Alma Ata and Syowa (low-lying stations

in mountainous regions) are also considered appropriate (Fleig et al., 1982). Such comparisons

also make no allowance in judging the performance of an individual station between stations

with differing natural variability. Tropical stations, for instance, show little day-to-day or
seasonal variability.
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Figure 4.7 Fractional distribution of (top) 71 Dobson stations and (bottom) 21 M-83 filter stations according
to the (station-TOMS)/station monthly mean differences in 1 percent intervals. More than two-thirds of the
Dobsons, but only half of the M-83 stations, have less than 2 percent mean difference with the network
average transferred via TOMS; 22 percent of all stations have differences >i 3 percent.

The analysis of the differences should consider information for the corresponding station
variability. If the scattering of the daily differences is widely spread around the zero line, the

annually averaged values could be misleadingly small. Another view of the (Dobson-TOMS)/

Dobson differences, as a function of their relative variability (standard deviations expressed in

percent of the total ozone at the given station), is presented in Figure 4.8. The upper panel shows

the fractional distribution of 92 stations according to the relative variability of their monthly
mean differences, in I percent intervals. The continuous line is for direct Sun and the dotted line

for all observations, with no great differences between the averages of the two groups of
observations. An important indicator of the stability of the monthly mean differences is that 60

percent of the gtations reporting direct-Sun observations show less than 2 percent variability.

Greater than 4 percent variability is shown at only 7.6 percent of the direct-Sun observing
stations (10.9 percent of all). Here it should be noted that, although the number of stations with

variability greater than 3 percent using Dobson or filter instruments is nearly the same, the

fraction from all Dobson stations is only 12 percent for direct-Sun (16 percent for all) observa-
tions, while the filter stations' fraction is 63 percent (68 percent for all). This is a clear indication of

the lesser variability of the Dobson vs. the filter stations (ratio better than 1:4). Table 4.9 lists all

stations for which the variability of their monthly mean differences exceeded 3 percent. When
the variability for the data reported by a particular station is too high, the implication is that the

cause lies with some aspect of the ground-based system and marks the station as one that might
be omitted from more detailed comparisons.
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Figure 4.8 Fractional distribution of 92 stations according to the relative variability (_ in percent of the total
ozone at a given station) of their monthly mean differences with TOMS. The solid curve indicates direct Sun
and the dotted curve indicates all observations.

Table 4.9 Stations With Variability of Their Monthly Mean Differences With TOMS >13 Percent.

Station Dobsons

Brindisi* 16.1

South Pole 8.0

Casablanca 6.6

Aarhus 5.1

Macquarie Island 4.7

Bangkok 3.7
Brisbane 3.6
Hobart 3.5

Churchill 3.5

Bracknell 3.3

Lerwick 3.2

Singapore 3.1
Resolute 3.0

Station Dobsons

Dikson Island* 6.9

Heiss Island* 5.9

Nagaevo 5.2
Vladivostok 5.2

Riga 4.2
Murmansk 3.5

Odessa 3.4
Yakutsk 3.4

Kiev 3.3

Irkutsk 3.2

Maputo 3. I
Alma Ata 3.0

Sakhalin 3.0

*Limited data
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4.3.1.2 Comparison of Individual Station Data With TOMS Overpass Data

A major advantage of the satellite-ground intercomparison is its identification of abrupt
changes in the calibration of an individual groundstation, with the continued stable satellite-

ground relationship for the rest of the network as evidence that the change should be attributed

to some event at the groundstation. The intercomparison between the ODW data for Huancayo

and the satellite shows an abrupt downward shift in late 1982 (Figure 4.9) that is directly traceable
to recalibration of the Huancayo Dobson in October 1982. The satellite intercomparison serves as

a warning to outside users that the data published in ODW are not suitable for trend analysis

without reevaluation to adjust for the recalibration. Other examples of apparent calibration shifts

are the changes in the satellite-ground responses for Bracknell (Figure 4.10), Singapore (Figure
4.11), and Brisbane (Figure 4.12).

By contrast, an example of great consistency in the overpasses between the ground-based

readings and the corrected TOMS data set is shown in Figure 4.13 for the Shiangher station near

Beijing. The data illustrate that a well-run Dobson station and an overhead satellite can provide a

combined data set that creates confidence in the operation of both measurement systems. The

smoothness and consistency of the observations at this station (o-of the 84 monthly differences is
only 0.7 percent) will become more apparent after discussion of a few more of the less successful
stations.
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Figure 4.9 Monthly differences between ozone measured at Huancayo and by TOMS (BR is bias removed),
showing a slow upward drift during the first 4 years and a sharp decline in October 1982 (result of calibration).
The _ of the differences forming each monthly point is about 2.6 percent. The circles and the solid curves
indicate direct-Sun observation, and the pluses and the dashed curves indicate all observations. A point is
plotted only if there are at least 13 overpasses for the particular month. The record starts with November
1978.
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Figure 4.10 Monthly (Dobson-TOMS)/Dobson differences for Bracknell indicating a downward rift between
1981 and 1984, followed by a sudden upward shift. The (r of the differences forming each monthly point is
about 5.6 percent and is among the largest in the network. The circles and the solid curves indicate direct-Sun
observations, and the pluses and the dashed curves indicate all observations.
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Figure 4.11 Monthly (Dobson-TOMS)/Dobson differences for Singapore showing a strong downward drift
between 1980-1983, when, as a result of calibration, the instrument is stabilized but at a level about 7 percent
too low. The erof the differences forming each monthly point is about 2.4 percent. The circles and the solid
curves indicate direct-Sun observations.
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Figure 4.12 Monthly (Dobson-TOMS)/Dobson differences for Brisbane showing a downward drift until the
end of 1980, followed by a sudden drop of about 5 percent. Only after calibration in early 1985 is the
instrument restored to a state of agreement with the rest of the ozone network. The _ of the differences
forming each monthly point is about 4.5 percent. The circles and the solid curves indicate direct-Sun
observations, and the pluses and the dashed lines indicate all observations.
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Figure 4.13 Monthly (Dobson-TOMS)/Dobson differences for Shiangher (near Beijing). The cr of the
differences forming each monthly point is about 2.i percent. The circles and the solid curves indicate
direct-Sun observations.
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One very common problem that appears in many stations is the strong #°dependence of the

instruments--i.e., an apparent ozone reading that is affected by the slant angle of the Sun at the

time of measurement. This results in reported ozone values that are too low at high Sun during

the summer months (June and July) and too high at low Sun (November-January) in the

Northern Hemisphere. A good example of this problem is shown in the data from Potsdam

(Figure 4.14), for which the December-January periods tend to show strong positive deviations.

This data set also shows a shift in the overall comparison from mostly negative during 1979-1982

to mostly positive after 1983. Such a shift usually signifies a calibration problem, as could occur

with a step-function recalibration in September 1982. The _-dependence continues after the step
function shift.

Another station whose data show a pronounced/_-dependence is Hobart, Tasmania (Figure

4.15). The deviations at Hobart are often strongly negative, corresponding to ozone readings

lower by 30 or 40 DU than indicated from the satellite instrument. Identification of a strong

/z-dependence from comparison with TOMS calls for a review of the extraterrestrial constant

values used at the particular station. Appropriate corrections can be made to the station record

given the existence and availability of an exact history of calibrations verifying the events, as is
the case for Hohenpeissenberg. The top panel of Figure 4.16 shows the monthly differences for

the originally published monthly ozone values: a seasonal variation is apparent. This

/_-dependenee is primarily an extraterrestrial-constant-related error, indicating incorrect cal-

culation of the AN correction to the N-tables (see Dobson, 1957a, 1957b), and it was most

probably introduced to the instrument through improper adjustments made during inter-

comparisons at Arosa in August 1977. This was not corrected until early 1985. When the

/z-dependent variations were removed from the published record and calibration corrections for

the period March 1985-August 1986 were introduced, the differences with TOMS overpasses
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Figure 4.14 Monthly (Dobson-TOMS)/Dobson differences for Potsdam indicating a/_ dependence as well
as a shifting (in 1982-1983) of the level of ozone measured by the groundstation. The _ of the differences
forming each monthly point is about 4.2 percent. The circles and the solid curves indicate direct-Sun
observations, and the pluses and the dashed lines indicate all observations.
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Figure 4.15 Monthly (Dobson-TOMS)/Dobson differences for Hobart showing an extremely large/_ de-
pendence and an erroneously low ozone level for the entire period of comparison. The (r of the differences
forming each monthly point is about 4.7 percent. The circles and the solid curves indicate direct-Sun
observations, and the pluses and the dashed lines indicate all observations.

(shown in the bottom panel of Figure 4.16) indicate a very stable record. There is a mean bias of

about 2.5 percent, and this difference would probably be reduced to about 1.5 percent if a more

accurate altitude correction were applied to the TOMS data to suit the elevated location of
Hohenpeissenberg.

Discrepancies in a station record caused, for example, by difficulties with the transfer of

zenith-sky observations (taken at very low Sun) to direct-Sun values, appear on Figure 4.17,

which records the data from Churchill, Canada. For most of the year, this station shows a good
ozone record having constant level differences (-2.3 percent with TOMS). However, December

and January values are low by about 7 percent and 5 percent, respectively. The probable problem

here is that direct-Sun observations are rarely possible in these months because of virtually

constant cloudy conditions, while the zenith sky transfer charts used at Churchill were not
calculated from observations made at that station.

Many more illustrative examples can be given by looking at the scatter diagrams of the daily

differences with TOMS overpasses. Some of the greatest scattering is shown by Aarhus (Figure
4.18), Casablanca, and Bracknell. The o- of the differences forming each monthly point, based on

the average from the annual samples for each of these stations, are 9.1 percent, 10.8 percent, and

5.6 percent, respectively. The readings from Aarhus are noteworthy not only for the very large

218



TOTAL COLUMN OZONE

I--
Z
LU
0
n"
UJ
0_

7.5

5.0

2.5

0

-2.5

-5.0

2.5

0

I I I I I I I /

1HOHENPEISSENBERG

-7.5 I I I I I I I
78 79 80 81 82 83 84 85 86

YEAR

Figure 4.16 Monthly (Dobson-TOMS)/Dobson differences for Hohenpeissenberg. The top panel indicates a
well-pronounced/_ dependence until 1985. The bottom panel shows the same monthly differences after
removal of the _-dependent variations and application of the instrument calibration procedures, indicating a
very stable course, except too low by about 2.5 percent. This difference would be reduced by about 1 percent
if an altitude correction is applied to the TOMS data. The _rof the differences forming each monthly point is
about 2.8 percent, and is among the smallest in the network. The circles and the solid curves indicate
direct-Sun observations.

scatter versus the satellite data but also because not a single reading in the entire set represents a

direct-Sun observation. Comparison of the ozone readings from Aarhus with those from nearby

stations that might be expected to be in a similar meteorological regime also shows a very wide

scatter. The data from Aarhus recorded in ODW have not been used either in the subsequent

analysis of individual stations or in the compilation of latitudinal band averages.

At other stations, one can easily distinguish problems with zenith-sky observations. For

example, the direct-Sun ozone observations from Toronto (Figure 4.19) agree well with the
satellite observations, while its zenith-sky values are almost all high, with an average deviation

from the direct-Sun values of + 10 percent. The or of the differences forming each monthly point

is only -2.2 percent for direct Sun but increases to a high of 4.6 percent when all observations are

considered, as is usually done with the other stations. The likely explanation for such incon-

sistency between zenith-sky and direct-Sun observations is that the empirical zenith sky chart for

Toronto is faulty.
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Figure 4.17 Monthly (Dobson-TOMS)/Dobson differences for Churchill indicating a constant difference of
about 2.3 percent during most months, except for the winter (December and January are too low by about 7
and 5 percent, respectively). The _ of the differences forming each monthly point is about 5.1 percent. The
circles and the solid curves indicate direct-Sun observations, and the pluses and the dashed lines indicate all
observations.
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Figure 4.18 Daily differences for Aarhus indicating extremely great scattering. The _r of the difference
forming the monthly points (not plotted) is about 9.1 percent, the second largest in the network.
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Figure 4.19 Daily differences for Toronto indicating stable direct-Sun readings (the (_of the differences of the
monthly values is only about 2.2 percent) and very great scattering of the zenith-sky readings. The (_of the
differences forming the monthly points from all observations (not plotted) is about 4.6 percent. The circles
indicate direct-Sun observations, and the pluses show all other measurements.

4.3.2 The Station-Corrected Total Ozone Data From Belsk, Poland

The procedures for reporting data to ODW were described in Section 4.1.1.5. The pertinent

points for this discussion are

• The authority and onus to report recalibrations and their effect on previous data are on the
individual stations and not on ODW.

• Individual stations quite frequently are not staffed with enough trained manpower to carry

out any retrospective data evaluation and correction.

The Dobson spectrophotometers are intended to be checked at least monthly with lamp tests,

monitoring the instrumental spectral sensitivity response to a standardized exposure to UV
radiation. The monthly lamp tests can indicate constancy, or a change in the wavelength

selection by the instrumental slits. However, sometimes the monthly lamp tests provide

information pointing either to an abrupt step change or to a steady ramp change in instrument

response to the UV test. In addition, the individual Dobson instruments are occasionally

recalibrated by direct comparison at a common location with either the world primary standard

or with one of the secondary standards. The usual procedure after calibration is the immediate

installation of the new calibration values. There should also be a retrospective reevaluation of
any earlier data--including the measurements made according to the old calibration scale only a

short time beforehand. In practice, such reevaluations are rarely performed, and unreported

retrospective consideration of the data does not appear to be much more frequent.

In the ideal case, the complete station records are thoroughly investigated by the station itself

following recalibration, and a revised data set is produced with the revisions made on a
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reading-by-reading basis--i.e., each daily measurement is corrected, and the monthly average is
then recalculated. Such a procedure was performed by the personnel of the Dobson station at

Belsk, Poland, for the data up to the end of 1981 (Dziewulska-Losiowa et al., 1983), and the

revised data set was published in ODW. However, in general, such revisions have not been

published and, in most instances, not performed. Currently, detailed reviews are known to be in

process in Potsdam, Hohenpeissenberg, Sapporo, Tateno, Kagoshima, some of the Australian

stations (Atkinson, 1988), Invercargill (Farkas, 1988), some of the U.S. stations (Komhyr, 1988),

and some Indian stations (Andreji, 1988). As stations complete such retrospective analyses, their

revised data sets will be published in ODW and will be available for statistical trend analysis.

Until such reevaluations have been made, we have constructed provisionally revised ozone data

for a substantial number of stations using external techniques for determining the times during

which calibration problems may have occurred. Before describing further the procedures used
for these provisional revisions, we shall discuss the revaluation of ozone data as carried out at
Belsk.

Figures 4.20 and 4.21 show, respectively, the "revised" Belsk ozone data as published in

ODW (solid line) and the "old" ozone data set from Belsk, also published earlier in ODW.

Substantial differences exist between them, and the statistically calculated trends changed from
positive to negative with the revision. Finally, a procedure is described in the next section for

making a "fast" correction to an ozone data set in need of retroactive adjustment because of

recalibrations. The "fast" method can be contrasted with the preferred, but much more labor

intensive, "slow" method of day-by-day, ozone-reading-by-reading recalculation of the data by

the station personnel carried out at Belsk (Dziewulska-Losiowa et al., 1983). The ozone data for

the fast and slow methods are compared in Figure 4.20. While the agreement between the two

methods is not complete, the fast corrections provide a very much closer approximation to the
best available revised Belsk data than does the uncorrected old data set from earlier editions of

ODW.
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Figure 4.20 Comparison of the Belsk station-revised ozone data (--) and the "fast" revised record (...),
including corrections found during the August 1986 intercomparisons. The data are plotted as monthly
deviations that have been normalized and smoothed by taking the 12-month running mean.
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Figure 4.21 The Belsk total ozone record as it was originally published in Ozone Data forthe World.The data
are plotted as normalized monthly ozone deviations that have been smoothed.

The ozone data have been corrected in the fast method through calculation of the changes

induced by recalibrations, using monthly average corrections applied to the monthly ozone

averages. The times and magnitudes of the various recalibrations have all been identified by

Belsk station personnel from their records, permitting ready revision of the old monthly ozone

data. Application of the fast revision to data from other stations is likewise dependent upon the
timing and magnitude of all recalibrations for changes in the sensitivity of the Dobson

instrument; several techniques for identifying the approximate time intervals during which such

calibrations probably occurred are also described below. It is worth restating that the best

method of revision is the day-by-day, reading-by-reading reevaluation as carried out at Belsk.

However, pending such revisions by the slow method at the individual stations, we have
produced provisionally revised data sets for more than 20 Dobson stations by the fast technique.

The provisionally revised data for Belsk using the fast technique were calculated for comparison

purposes only and have not been used for statistical trend analysis.

4.3.3 DETECTION OF UNRECORDED DOBSON RECALIBRATIONS

4.3.3.1 Comparison of Data From Proximate Stations

The general technique for reevaluating data from a Dobson station begins with the identifi-

cation of time periods during which calibration shifts have occurred. The satellite-ground
intercomparison has been useful since November 1978, when Nimbus-7 data first became

available. Two approaches that can be used for identifying possible calibration shifts prior to
November 1978 are comparison of ozone readings from two or more nearby groundstations that

are in similar synoptic scale meteorological regimes and comparisons for middle- and high-

latitude stations with the local 100-millibar temperature readings.
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When the 12-month running means of two nearby, well-run stations are compared, the
curves should parallel each other closely, although often with a constant ozone differential.

Conversely, a sudden change in the relative position of the curves is an indication that the

measurements of one of the stations (or, very unlikely, of both at the same time) have gone awry,

so that the detailed monthly calibrations for the two stations should be examined carefully. An

excellent example of the information available from intercomparisons of two stations is given by

the ozone data from two Indian stations, New Delhi and Varanasi (Figure 4.22). The patterns of

the 12-month running means agree well with each other from 1977-1986 (including the entire
period covered by Nimbus-7 TOMS), with the New Delhi instrument registering about 15 DU

more than Varanasi. However, the earlier period, between 1969-1977, exhibited a very different
pattern between the stations, with the New Delhi-Varanasi difference about -15 DU rather than

+ 15 DU. This shift of 30 DU, or about 10 percent, appears to occur between 1973 and 1977, and is

strongly suggestive of a large calibration change in one or both instruments.

The published data from Tateno and Kagoshima are compared in Figure 4.23, and two

obvious features are present. First, there is a major disagreement between the two stations
around 1961, with Kagoshima recording appreciably lower relative values than Tateno. No

information was available concerning this discrepancy in the Kagoshima record, and so the early
measurements have been excluded in the provisionally revised data. Second, there is an
excellent correlation between the two since 1977. For the rest of the time, the short-term

variations in the records are similar, although the relative levels may be changing by small
amounts. For instance, from around 1970 to 1977, Kagoshima is slightly higher relative to Tateno

than it is in the rest of the record, and around 1969 it is slightly lower. These last two observations

do not lead to the conclusion that either instrument was incorrectly calibrated in these two
periods, but they do suggest that it is worth checking the records for such a case.

In Figure 4.24, the Potsdam ozone data are compared with the revised Belsk data. Again,
there is good agreement since 1977. Earlier in the record, Potsdam is first higher than Belsk

(1966-1969), then lower (1969-1977). The Potsdam data have subsequently been corrected by the

station staff, although the data were not available for this study.

O3

Z
©
O3
cn
©

300

290

280

270

I I I I

_ VARANASI & NEW DELHI _ . ...

-
_.-/""";!/

• °

I I I I I

I
: ; .';

• ; .,,.,"_
o°o_

• :. : ;
• " "4 "

260
57 61 65 69 73 77 81

YEAR

I

85

Figure 4.22 The 12-month running means of the total ozone measurements taken at Varanasi (--) and New
Delhi (...) and that are recorded in Ozone Data for the World.
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Figure 4.23 The monthly total ozone deviations (a smooth plot of the actual deviation divided by the
particular month's interannual standard deviation) for Tateno (--) and Kagoshima (...) that are recorded in
ODW.
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Figure 4.24 The monthly total ozone deviations (as in Figure 4.23) for Potsdam (--) and Belsk (...). The
Potsdam data are taken from ODW, and the Belsk data are the station-corrected set that was also published
in ODW and that replaced the original values reported to ODW.
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4.3.3.2 Comparison of Total Ozone Data With 100 mbar Temperatures

The existence of a strong positive correlation between total ozone and stratospheric tempera-

tures has been known for half a century (Meetham, 1936). Aspects of the complex physical

relationships have been recently discussed by Rood and Douglass (1985) and by Douglass et al.
(1985). The basic hypotheses are that warm air advection in the middle stratosphere should be

associated with a positive ozone advection, and cold air advection should be accompanied by a

negative ozone advection. Moreover, ascent of air causes a decrease in both ozone and tempera-
ture, while descent increases both. This picture is oversimplified: for example, the seasonal

cycles of temperature and ozone are not in phase because of their different responses to the

radiation balance. However, their responses to transport by the general circulation are similar.

For example, at the time of Northern Hemisphere minimum stratospheric temperatures (in

January), the general circulation supplies heat to the polar areas to balance the radiative cooling.

This energy-balancing process is accompanied by an ozone transfer, resulting in an increase of
total ozone. Sudden winter stratospheric warmings, whether caused by advection or sub-

sidence, are accompanied by rapid increases in total ozone. The use of 100 mbar temperatures as
an indicator of the course of total ozone is justified because the 100 mbar ozone and total ozone

are so well correlated. When available, the 50 mbar temperatures were used as supplementary

data. The effect of the differing seasonal cycles of temperature and total ozone is removed by
deseasonalization of the two time series. (The correlations between total ozone and 100 mbar

temperatures are never used for actual adjustment of ozone values; they serve merely as one of
the diagnostic procedures used for discovery of possible unreported ozone recalibrations.)

The various versions of the Belsk ozone data are compared against the 100 mbar temperatures

in Figures 4.25 to 4.27. In Figure 4.25, the 100 mbar temperatures are plotted against the old Belsk
data prior to any revision, and without any corrections. Figure 4.26 contains the old data revised

through 1981 plus the data recorded since 1981, all corrected by the fast method based on
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Figure 4.25 The monthly deviations (as in Figure 4.23) for the originally published Belsk total ozone record
(--) and for the 100 mb temperature (...).
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Figure 4.26 The monthly deviations (as in Figure 4.23) for the fast-revised Belsk total ozone record (--) and
for the 100 mb temperature (...).
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Figure 4.27 The monthly deviations (as in Figure 4.23) for the station-revised Belsk total ozone record (--)
and forthe 100 mb temperature (...). Since the station has, to date, revised the data only through December
1981, a provisional adjustment has been applied to the more recent data published in ODW.

monthly averages. Figure 4.27 shows the correlation between the current best revised set of

Belsk data and the 100 mbar temperatures. The station-corrected data have been used to the end

of 1981 in Figure 4.27 but, after 1981, a small fast correction has been made for a calibration error

that was found at the international comparison at Arosa. This calibration change occurred after

the major reevaluation of the Belsk data, and further post-1981 day-by-day revisions have not yet
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been reported from Belsk. The agreement between total ozone and 100 mbar temperatures found

in such comparisons furnishes the basis for raising questions about the ozone record at other

stations for which the two data records diverge.

Figure 4.28 contains the ozone and 100 mbar temperatures for Churchill. The upper panel

contains the published Churchill data and the lower one contains the provisionally revised
Churchill data. It can be seen that only minor changes have been made. However, around 1981,

when the published ozone deviations were high compared to the temperature deviations, a

small adjustment can be seen to have been made, with the result that the two series lie closer

together. However, there is still a period, roughly from 1969 to 1973, during which the ozone is

running higher. This, again, is a period for which a further check of station records is desirable.

Figure 4.29 contains the provisionally revised Bismarck ozone data plotted against the 100
mbar temperature. Relatively low ozone values were observed in 1983 at Belsk, Churchill, and
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Figure 4.28 The monthly deviations (as in Figure 4.23) of the 100 mb temperature (...) are plotted against
the total ozone data (--) from Churchill. In the upper panel, the ozone values published in ODWare shown,
and in the lower panel the provisionally revised total ozone data set is plotted.
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Figure 4.29 The provisionally revised total ozone data (--) and the 100 mb temperatures (...) for Bismarck
are plotted.

Bismarck, reflecting the low northern midlatitude total ozone values of that year. The 100 mbar

temperatures at Churchill and Bismarck do not exhibit the same abnormal decline as the ozone,

as might be expected by analogy with the historical correlation.

4.3.4 Provisionally Revised Ozone Data Sets for Individual Stations

In the current study, the total ozone values published in ODW were examined for incon-

gruities. The identification of problematic time periods in indMdual station records using the

diagnostics described in the previous sections furnishes a basis for concern about the data

published in ODW, but does not provide a basis for correction of such data. In many instances,

however, the calibration records maintained by the individual stations but not always reported

to ODW show clearly when a shift has occurred--e.g., the Huancayo data of Figure 4.9. With the
additional information provided by these records of calibration changes, a revised set of total

ozone data can be constructed for each station, eliminating the effects of sudden calibration

shifts. The provisional revision in this report (Bojkov, private communication, 1987) applied

each recalibration factor to the monthly data back to when the previous calibration took place,

implicitly assuming that the changes took place abruptly. Sets of provisionally revised data for

the 25 stations listed in Table 4.10 are given in Appendix 4.A(i) of this chapter. These tables are

labeled "provisionally revised" (Bojkov, private communication, 1987).

Two procedures were used to handle a lack of daily measurements:

• If there was a day for which no value was recorded in ODW, but there were readings made

on the days before and the days after, then an average value was inserted for the missing

day.

• At least 13 daily values had to be available within the month for a legitimate monthly mean
to be calculated.
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Table 4.10 Provisionally Revised Station Data Used in the Time Series Analyses.

Arosa 1 1/57-12/86

Aspendale 7/57-12/86
Belsk 1/63-12/86
Bismarck 1/63-12/86

Boulder 1/64-12/86

Bracknell 1/69-12/86

Cagliari-Elmas 1/57-12/86
Cairo 11/74-10/86

Caribou 6/62-12/86

Churchill 1/65-12/86

Edmonton 7/57-11/86

Goose Bay 1/62-11/86

Hohenpeissenberg 1/67-12/86
Hradec Kralove 1/62-12/86

Huancayo 2/64- 6/86

Kagoshima 4/61-12/86
Leningrad 8/68-12/85
Lerwick 1/57-11/86

MacQuarie Isle 1/63-12/86
Mauna Loa 1/63-12/86

Nashville 1/63-12/86

Quetta 8/69-12/86

Reykjavik 11/75-10/86
Rome (Vigna di Valle) 1/57-12/86
Samoa 2 1/76-12/86

Sapporo 1/58-12/86

Srinigar 2/64- 5/86
Tateno 7/57-12/86

Toronto 1/60-12/86

Uccle 2/71-12/86

Wallops Island 1/70-12/86

1Data accepted in unrevised form from Ozone Data for the World.

2Data revised and supplied by W.D. Komhyr et al. (1987).

All other data are the monthly averages of total ozone published in Ozone Data for the World with the appropriate

average monthly corrections applied. The amounts are given in Dobson Units.

After the first set of revised data had been prepared, the missing monthly values were treated

as follows: if only 1 month was missing, the value substituted was the sum of the long-term

monthly mean and the product of the interannual standard deviation of the missing month and

the average of the two neighboring months' deviations (actual deviation divided by interannual

standard deviation). These data sets were used for the comparison of the monthly means in two

time periods. For the purpose of the full time series analyses, any other missing monthly values

were replaced by the long-term monthly mean for that calendar month.

4.3.5 Sensitivity of the Method Used To Calculate the Provisionally Revised Data

If one ignores the details of the operation of the Dobson spectrophotometer, one can imagine

two general cases that can be considered for the measurements prior to a hypothetical 3 percent
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difference after recalibration of a Dobson instrument. The first situation is a step in which a 3

percent change in calibration is introduced at one instant, as could happen if the instrument were

moved, accidentally jarred, etc. The other situation is a ramp that might occur through the slow
deterioration of some part of the instrument. If a hypothetical situation is considered in which

the actual column of ozone to be measured is absolutely constant over the period under

consideration, then the recorded values would appear as a sudden step in the first case and as a

uniformly varying ramp in the second. While no problem exists in such a hypothetical situation

for distinguishing between the two situations, the real measurements are very much blurred by

the natural variability of ozone over a particular measuring station.

The Belsk data can be used to test whether the assumptions made in correcting data prior to
each recalibration introduce artificial trends into continuing data records. The arbitrary correc-

tion forms tested are a step change introduced immediately after the previous calibration (as

used in the provisional revision), and a ramp between the two calibrations (i.e., a linear variation

with time). In a real situation in which either a ramp or a step at a particular time is indicated by

lamp tests or some other external information, the appropriate correction would be applied. Our

concern here is directed toward whether an arbitrary choice of either a ramp or a step causes a
serious error in the evaluation of secular trends. It should be remembered that the data as

published in ODW represent de facto the arbitrary choice that the physical change represented by

the recalibration was not present on the day before recalibration and took place suddenly as a

single step.

The statistical model used for these analyses in Table 4.11 is similar to that used by Reinsel

and Tiao (1987):

Y(t) = _ + S(t) + W. T(t) + N(t)

in which _ is the long-term mean; S(O is a term describing the seasonal variation, consisting of
the sum of a sine wave with a period of I year, and its harmonics; T(O is a linear trend starting in

1970 with W as its coefficient (only a year-round model was used, not a model that allowed for

different monthly trends); and N(t) is an autocorrelated noise term. This model is not the same as

that developed for the full trend analysis reported later in this chapter.

The ozone data from Belsk have been "corrected" for four different periods subject to

retroactive calibration corrections, using either a ramp (R) or step (S) correction at each oppor-
tunity. The combination of the choice of R or S for each of four periods has provided 16 possible

choices for how this correction should be applied---e.g., RRRR, RRRS, RRSR, etc. Comparisons
with the revised data set can then be made of various versions of the fast correction--e.g., ramp

or step at each recalibration, and with the old data set. The results of such trend analyses for all of
these series are shown in Table 4.11. The data set used is that from March 1963 through July 1986,

with just one missing monthly value.

Several points are worth noting:

• There is a large, significant difference between the trends calculated for the originally

published data, + 0.68+ .37 DU/yr, and the revised station data, -0.40__-.29 DU/yr.

• The trend calculated using the data set calculated by the method used in the provisional
revision of other stations (designated SSSS) has a trend, -0.47_+ .31 DU/yr, that is very
close to that of the revised station data.
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Table 4.11 Results of Trend Analyses of the Monthly Ozone Values at Belsk, Poland, for the
Period 3/63-7/86. S -- Step and R = Ramp Correction.

Data W (DU/Year)

Old ODW + 0.68 _+0.37

Revised - 0.40 _ 0.29

SSSS -0.47_+0.31

SSSR -0.43_+0.31

SSRS -0.46_+ 0.31

SSRR - 0.42 _ 0.31

SRSS - 0.22 _ 0.30

SRSR - 0.18 _+0.30

SRRS - 0.20 + 0.30
SRRR -0.17_+0.30

RSSS - 0.18 _+0.35

RSSR - 0.16 -+0.35

RSRS - 0.18 -+0.35

RSRR - 0.14 _+0.35

RRSS + 0.07 -+0.32

RRSR + 0.10 -+0.32
RRRS + 0.07 _+0.32

RRRR + 0.11 _+0.32

• Although there is a substantial variation in the trends calculated among the 16 differently
adjusted time series, all are closer to the trend of the station-revised data set than is the

trend of the originally published data set.

Two conclusions can be drawn. First, the use of the correction factors found at the various

recalibrations improves the quality of the data whether a ramp or step is assumed and, second,
the use of step rather than ramp corrections is justified in the case of Belsk.

4.4 CALIBRATION OF TOMS DATA USING DOBSON DATA

In previous sections, the long-term TOMS record has been used to find abrupt changes in the

records of individual Dobson stations. Relative changes that occur gradually over a period of

several years could be caused either by the satellite instrument (SBUV/TOMS) or by an individual

groundstation, but a drift relative to all of the Dobson stations is likely to have been caused by a
calibration drift of the satellite instrument.

4.4.1 Comparison of TOMS Data With the Dobson Network

Fleig et al. (1986b) examined the drift of TOMS relative to an ensemble of 41 Dobson stations;

this study was recently updated by Fleig et al. (1988). They found that TOMS total ozone values

declined relative to the Dobson network at a rate of -0.25 percent per year between 1979 and
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mid-1982, but declined at a rate of -0.51 percent per year until October 1985, the end of the period

studied. The decline for SBUV was of similar magnitude. An alternative version of this com-

parison is described in detail in Section 4.2 of this chapter.

While the ozone concentrations indicated by the satellite instruments clearly declined relative

to the values shown by the Dobson network, further tests are desirable of the assumption that

this drift originates in the degradation of the satellite instruments. One such test involves

internal calibration of the satellite instrument using radiances measured at wavelengths used in

the primary ozone determination, as described in Chapter 2. A second such test can exist if

circumstances exist during which nonroutine, intensive measurements are being made under

favorable conditions for a ground-based Dobson instrument.

4.4.2 Comparison of TOMS Data With the International Primary Standard Dobson Instrument

A special opportunity for comparison exists for the International Standard Dobson Instru-

ment No. 83 during its periodic recalibrations at Mauna Loa, Hawaii. As described in Section

4.1.1.4, Dobson instrument No. 83 was established in 1962 as the standard spectrophotometer
for total ozone measurements in the U.S., and later as the International Primary Standard

Dobson Instrument. The absolute calibration of this instrument over the period 1962-1987 has

been maintained to within an uncertainty of +0.5 percent (Komhyr et al., 1988). Inter-
comparison of TOMS data with the data from these Mauna Loa recalibrations provides an

opportunity for testing the possible drift of TOMS (and SBUV) within the accuracy of these

calibrations. The 3.5 percent drift described in Section 4.3 is clearly much larger than the + 0.5

percent stability of the International Primary Standard.

During a calibration using the Langley method, repetitive measurements of ozone are made

on an individual day with different Sun angles and air masses to permit extrapolation to zero air
mass and the determination of the extraterrestrial constant. These calibrations with Instrument

No. 83 are repeated on a number of different days at Mauna Loa in a short period of time in order

to determine the reproducibility of the calibration. Mauna Loa is an especially favorable site for

such calibrations because its tropic, mountaintop location provides clean, generally aerosol-free
air, stable ozone fields over time, and nearly overhead noontime Sun reducing the extrapolation

to zero air mass. Such calibrations of Instrument No. 83 were performed at Mauna Loa in the

summers of 1979, 1980, 1981, 1984, 1986, 1987, and 1988. For this report, TOMS observations

have been compared with individual observations for each of these years except 1988. In 1979, for

example, there were 31 days between June 11 and August 14 on which both instruments

measured total ozone. The dashed circle in Figure 4.30 shows that Dobson Instrument No. 83
measured 278 DU of ozone on June 29 of that year. Of all the ozone measurements made by

TOMS that day, the measurement of 278 DU was most nearly collocated with the Dobson station.

The Dobson total ozone values indicated for the calibrations were increased by 0.9 percent to

account for the change in effective ozone absorption coefficients at Mauna Loa stratospheric

temperatures. In most instances, the ozone values indicated by TOMS and by the Dobson

correlated well except for two biases for which corrections can be made. One bias is the standard

practice of evaluating the measurements with different assumed sets of ozone absorption
coefficients (Bass-Paur for the satellite and Vigroux for Dobson). The second bias is an FOV

problem: the Mauna Loa station is at 3.4 km altitude, and the Dobson cannot have as much
tropospheric ozone in its column versus that seen nearby over the ocean by TOMS. The ozone

measurements made by the two instruments should not agree exactly: in Figure 4.30, adjust-

ments have been made for the stratospheric temperature and for the tropospheric ozone below

the Dobson station, but not for the different absorption coefficients.
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Figure 4.30 Intercomparison of TOMS overpass measurements of total ozone with World Primary Standard
Dobson ozone measurements at Mauna Loa Observatory, Hawaii, June 29, 1979. The Mauna Loa mea-
surement is enclosed in the broken circle.

The average ozone measured by TOMS in 1979 over Mauna Loa during the calibration period

was 292.5 DU, while that measured by Instrument No. 83 was 279.2 DU, a difference of 4.8

percent. The comparisons can be made more comparable by the addition of a correction term to

observations to account for the average amount of ozone present between the 3,400-meter

altitude of the Mauna Loa Observatory and sea level, because the satellite senses an average
value over a region of 1,600 km 2, almost all of which is ocean. This correction was determined

from ozone vertical distribution measurements made with ECC ozonesondes released during
1983-1986 at Hilo, Hawaii (elevation 0.011 km). The added amounts of total ozone were slightly

variable with the month of observation: 10 DU in May, 8 in June, 6 in July, and 7 in August. An

average amount of 8 DU was uniformly subtracted from the actual TOMS values in Figure 4.30.

Corrections for the altitude mismatch in the observations reduces the average difference in

1979 from 4.8 percent to 1.9 percent, with a statistical uncertainty of +0.26 percent. Similarly

calculated TOMS-Dobson percentage differences are plotted for each year in Figure 4.31. Two
different results are given for the Dobson each year, labeled (1) and (2), that represent two

slightly different calibrations for instrument No. 83. In case 1, the Dobson data are reduced using
the 1976 wedge calibration for all years, while for case 2 the data are reduced using updated

wedge calibrations. The results for both cases are shown to provide an estimate of the level of

uncertainty in the Instrument No. 83 results.
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Figure 4.31 The variation of the (TOMS minus Dobson) percentage difference with time given for three
different types of Dobson measurements. Data sets 1 and 2 (triangles and diamonds) are the result of
comparisons of the TOMS data with slightly different calibrations of Dobson Instrument No. 83 (see text).
while the circles represent the difference with an ensemble of 41 Dobson stations.

Ozone measurements with TOMS were relatively constant with respect to instrument No. 83

during the period 1979-1981. (Data for the ground-based instrument in 1980 are discounted

because of known operator errors that year.) The average offset was + 1.9 percent. By 1984,

however, the difference was only + 0.5 percent, a decline of 1.4 percent relative to the earlier
period, and by 1987 the absolute difference was -1.5 percent, a relative decline of 3.4 percent.

This decline relative to the International Primary Standard Dobson Instrument is consistent with

the decline noted relative to the average of many individual stations, as described in Section 4.3.

Accepting the difference as real, could its origin be geophysical and not instrumental? One

possibility that must be considered is that a secular increase in tropospheric ozone occurred at
Mauna Loa during this period. The observed 3.4 percent TOMS-Dobson drift corresponds to

about 10 DU of ozone, and a 20 DU change in tropospheric ozone (with 50 percent TOMS

sensitivity) between 1981 and 1987 would be required to explain the difference. Such a change

has not been observed. Measurements by ECC ozonesondes of the amount of ozone in the

lowest 4 km at Mauna Loa (Komhyr, private communication) showed 8.3 DU in summer 1983

and 7.0 DU in summer 1986, a difference of only 1.3 DU. Based on these data, changes in

tropospheric ozone must be discounted as a possible cause of the TOMS-Dobson difference in

the experiments conducted at Mauna Loa.

Figure 4.31 shows both the TOMS/No. 83 comparison and the yearly average TOMS-Dobson

difference (dashed line) from the ensemble of 41 Dobson stations for 1979-1985 (Fleig et al.,
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1986a). The important conclusion is that the same time dependence is observed for TOMS
relative to either standard. If the calibration of Instrument No. 83 has been constant, the TOMS
calibration must have drifted downward.

One final question to be resolved is whether the TOMS-Dobson drift could, in part, be an
instrument artifact in TOMS other than the diffuser plate degradation discussed earlier. In 1982,

TOMS began to experience a small number of cases of synchronization loss in the chopper that
subtracts "dark current." These "sync-loss" effects are flagged automatically by the instrument,

and indicate that only a few percent of the values were affected. Nevertheless, such effects need

to be considered when drifts of only a few percent over almost a decade are involved. This

possible source of error was discounted by examination of the SBUV-TOMS comparison data

through 1986. The independent SBUV instrument shares only the diffuser plate with TOMS and

had not then developed its own sync-loss problems. The SBUV-TOMS comparison showed that

TOMS total ozone agreed with that from SBUV to within half a percent for the TOMS A pair. As

indicated earlier, severe sync-loss problems developed for the SBUV instrument in February
1987, and this procedure for comparison is no longer valid.

4.4.3 Implications of TOMS-Dobson Drift

The conclusion that there was about 3.4 percent drift between TOMS and Dobson between

1979 and 1987, with much of the drift occurring after 1982, seems inescapable. The fact that the

same pattern, relative stability before 1982 followed by a sharp decline between 1982 and 1986,

occurred in the TOMS-Dobson comparisons for so many of the ensemble of 41 independent

stations, and with the larger set of 92 Dobson and M-83 stations (Table 4.8), is strong evidence in
itself. The complete confirmation by comparisons with the standard Dobson Instrument No. 83

for both TOMS and SBUV furnishes compelling additional evidence that this trend relative to
Dobson is real.

4.5 PRELIMINARY EXAMINATION OF GROUND-BASED TOTAL OZONE
MEASUREMENTS

Analyses of total ozone readings from any Dobson station in the Temperate Zone show ozone

variations correlated with one dominant physical cycle, the seasonal variation, and three other

potential contributors of lesser magnitude: the approximately 26-month cycle of the quasi-
biennial oscillation (QBO) of the direction of the stratospheric winds in the Tropics, the 11-year

solar sunspot cycle, and the formation of nitrogen oxides by the testing of nuclear bombs in the
atmosphere 25-30 years ago (Reinsel, 1981; Reinsel et al., 1981; Reinsel and Tiao, 1987; Reinsel et

al., 1987). A complete analysis of the total ozone data should take these effects into account

before calculating any trends in recent years. The statistical model used in this study is presented

in full in Section 4.6. This section contains a brief description of ozone climatology, followed by a
simple analysis of both the ozone data published in ODW and the provisionally revised data

discussed in Section 4.3 and given in Appendix 4.A.(i). Finally, a detailed description of the
analysis of the Bismarck data is presented as a case study to show the effects of the various

geophysical relationships.

4.5.1 Basic Total Ozone Distribution

Some early observations of total ozone were made as far back as 1913; routine Dobson

spectrophotometer measurements were started at Arosa (Switzerland) and Oxford (England) in
the late 1920's and at Tromso (Norway), Lerwick (Scotland), and some other stations in the
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1930"s. However, it was not until the International Geophysical Year (1957-1958) that observa-

tions at a sufficient number of stations became available to make possible global analysis of the

total ozone distribution (e.g., London et al., 1976). The uneven geographical distribution of the

stations, with a heavy concentration in the north Temperate Zone and only a few in the Southern

Hemisphere, introduced a spatial sampling error into the global analysis that still persists.

The average distribution of ozone over the globe for 1957-1975 is shown in Figure 4.32. The
main features are:

• A pronounced minimum over the equatorial belt, with increasing concentrations poleward

to about 70 degrees, and with a secondary minimum at the poles;

• The belt of ozone minimum (240 DU) lies between 10% and 15°N latitudes;

• The total ozone increases in a poleward direction in both hemispheres, but the north and

south are not symmetrical to one another;
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Figure 4.32 Average total ozone distribution for 1957-1975 derived from ground-based measurements.
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• Pronounced longitudinal inhomogeneities exist, as indicated by ridges of higher ozone

concentration over the eastern edges of the continents, a function of the climatological
specifics of planetary circulation waves;

• The ozone concentration over the Antarctic is smaller than over the Arctic, reflecting

differences in the patterns and behavior of the individual circumpolar vortices.

The average concentration of total ozone as a function of latitude and month is graphed in
Figure 4.33 (London, 1980). In temperate and polar latitudes, substantial changes are observed

with the seasons. Broad similarities exist between the two hemispheres: in each, the total ozone

minimum is reached near the fall equinox and the maximum occurs near the spring equinox.

There are also differences: the maximum is slightly later in the Southern Hemisphere, and the

maximum rate of increase occurs in December/January (just after the winter solstice) in northern

latitudes, while in the Southern Hemisphere the ozone increases fastest in September (close to
the spring equinox). There are longitudinal inhomogeneities in each hemisphere that cannot be

shown in Figure 4.33; these tend to be more pronounced in the Northern Hemisphere.

The rapid increase of total column ozone during the winter-spring season and its decrease

during the summer toward an autumn minimum are shown in Figure 4.34 for 55 years of data

from Arosa, Switzerland. The interannual standard deviations of each month are shown by the
vertical bars in Figure 4.34. The long-term monthly means vary between 280 DU and 380 DU; the
interannual standard deviation of the winter months is about 25 DU; and the interannual
standard deviation of the summer months is about 10 DU. Data from other stations show that the

variability increases at more northerly latitudes. These large natural variations make it hard to
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Figure 4.33 Variation of total ozone with latitude and season (from London, 1980).
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Figure 4.34 Long-term means of the monthly total ozone values at Arosa, Switzerland, for August 1931-July
1986. The associated interannual standard deviations for each month are shown as -+ 1 sigma vertical bars.

detect a trend, particularly in the winter months. The annual cycle at Arosa is typical of the
northern Temperate Zone, although there are longitudinal variations in the timing of the

maximum and the amplitude of the annual cycle.

4.5.2 Changes at Selected Stations Deduced From the Data Published in Ozone Data for the
World (ODW)

Harris and Rowland (1986) reported their observations that the ozone data from Arosa show

strong evidence for a substantial wintertime loss in total column ozone at that location, combined
with minimal losses in the summer months (Figure 4.35). They then demonstrated that a similar

effect existed at other north Temperate Zone ozone stations. These patterns are illustrated in

Figure 4.35 for the data as reported in ODW for five stations, four of which show a pattern similar

to that found for Arosa. The Arosa data are based on the full 55-year data set, divided into two

periods, August 1931-December 1969 and January 1970-July 1986. In the other five cases for

which the data records are not so long, the average of the monthly total column ozone

measurements over the 11-year period January 1976-December 1986 have been compared with

the averages of the monthly data for a period of 11 or more years prior to 1976. The differences
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Figure 4.35 (a) Differences in the long-term monthly means at Arosa between August 1931-December
1969 and January 1970-July 1986. (b)-(f) Differences in the long-term monthly means at five other stations

between the period prior to December 1975 and the period from January 1976 on. The first period has its

starting date as the time when the station started making total ozone observations, and the second period

ends in December 1986, except for Goose, where the data were available only through November 1986. Data
are taken from ODW.
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graphed illustrate the apparent gain or loss in ozone for each month, with negative values
indicating a loss. The standard deviation of the mean is calculated for each period, and the

vertical bar represents the uncertainty (+ 1 standard deviation) in the difference between the

means for the earlier and later time periods. This procedure is satisfactory for determining

whether the mean of the second time interval is significantly different from that of the first
interval.

The same preliminary analyses have also been carried out for a selected set of 19 Northern

Hemisphere ground-based Dobson stations between 31°-65°N latitude, using the ozone values
as originally recorded in ODW. The criteria for station selection include at least 22 consecutive

years of data and no special problems existing in the data sets (such as those discussed in Section

4.3). The individual station data for the 22-year period from 1965 to 1986 were used, and again the

monthly averages of the earlier and later 11-year periods were compared. The choice of 11-year

segments ensures that each period contains one solar cycle and about five QBO cycles, while the

starting date avoids the nuclear bomb test effects almost completely.

The results are illustrated in Figures 4.36 and 4.37, in which we have averaged the differences

for a 4-month "winter" season (December, January, February, March--DJFM) and a "summer"

season (May, June, July, August---MJJA), rather than include all the monthly differences for all
the stations. Negative values predominate especially strongly in the winter season (Figure 4.36),

with 18 of the 19 stations showing ozone losses averaged over the winter period in this data set.

The summer values (Figure 4.37) are more evenly distributed, with results from 11 stations

showing ozone decreases, 6 showing increases, and 2 unchanged. In the annual averages, 17 of

the 19 stations in Figures 4.36 and 4.37 show ozone losses. This analysis of the raw total ozone
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Figure 4.36 Differences in the means of the 4-month "winter" season (DJFM) for the 11-year periods from
January 1965-December 1975 and January 1976-December 1986 are plotted for 19 Northern Hemisphere
stations. Data are taken from ODW.
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Figure 4.37 Differences in the means of the 4-month "summer" season (MJJA) for the 11-year periods from
January 1965-December 1975 and January 1976--December 1986 are plotted for 19 Northern Hemisphere
stations. Data are taken from ODW.

data published in ODW draws attention to the existence of a strong tendency for less ozone to be
present during the most recent solar cycle than during the one preceding it, especially in

wintertime. Because the solar cycle that peaked in 1979 was larger than that of 1969 (sunspot

maximum of 165 versus 111 for the earlier maximum), any increase in ozone proportional to the

cycle intensity would be greater in 1975-1986 and would therefore tend to result in positive

values in Figures 4.36 and 4.37, a change opposite to the predominant observation.

The chief significance of Figures 4.36 and 4.37 is that they demonstrate an underlying change

in ozone concentrations as recorded in ODW, with less ozone in the more recent years, especially

in the winter months. This simple comparison of 11-year time segments provides no indications
of a specific geophysical causal nature other than the apparent circumstance of larger average

losses in the winter than in the summer. Subsequently, we expend most of our effort in statistical

analyses of the provisionally revised set of ozone data (Section 4.3), which also shows prefer-

ential ozone losses, especially in the recent winter years (Table 4.12). However, as shown in

Figures 4.36 and 4.37, this tendency is already present when the ozone data are used directly

from ODW without any change. (No uncertainty analysis is presented here for these results

using the data from ODW, but the statistical uncertainties given in Table 4.12 for the pro-

visionally revised data set are approximately the same.)

4.5.3 Differences Between Published and Provisionally Revised Data

The same analysis was performed on the provisionally revised data for the same 19 stations,

with the results shown in Figures 4.38 and 4.39. Comparison of these graphs with those

calculated from the ODW data set discloses that, while there is more consistency within the
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Table 4.12 Changes in Average Total Ozone Concentrations as Measured at Individual Dobson
Stations Over the 22-Year Period 1965-1986, Inclusive. (Percentage Differences for
1976-1986 Compared to 1965-1975.)

North
Latitude Station Winter 1 Summer 2 Annual

74.7 Resolute (Canada) -1.4+_-1.83 -0.8+0.9 -1.6+-1.0

64.1 Reykjavik (Iceland) -2.5+-2.2 +1.7+-1.3 +0.1+-2.4

60.2 Lerwick (Scotland) -3.8___2.0 -0.9+-0.9 -1.6+-1.0

58.8 Churchill (Canada) -4.2+_0.9 -1.4___0.8 -2.5+0.7

53.6 Edmonton (Canada) -4.7___1.3 +0.8+-0.9 -1.8+-0.8

53.3 Goose Bay (Canada) -2.4+1.3 -0.1+_1.1 -0.8+-0.9

51.8 Belsk (Poland) -3.2+-0.8 +1.2+1.0 -1.2___0.9

50.2 Hradec Kralove (Czech.) -4.7+- 2.0 + 1.1 +-0.9 - 1.8+- 1.1

47.8 Hohenpeissenberg (FRG) - 1.8 +-1.7 + 0.2_+ 0.9 - 1.0 + 0.9
46.9 Caribou (Maine, US) -2.8+-1.5 0.6+-0.8 -1.8+-0.9

46.8 Arosa (Switzerland) -3.0+-1.3 1.1+1.0 -2.0+-0.9

46.8 Bismarck (N.D., US) -3.0+-1.2 -1.4+-1.0 -2.0+-0.7

43.8 Toronto (Canada) -1.3+1.2 -1.3+-0.8 -1.2+-0.7

43.1 Sapporo (Japan) -0.6___1.4 -0.1+-0.9 -0.3+-0.6

42.1 Vigna di Valle (Italy) -2.9+_ 1.2 +0.7_+0.9 -0.9+-0.9
40.0 Boulder (Colorado, US) - 3.9 +- 1.3 - 3.1 ___0.7 - 3.3 +-0.8

39.3 Cagliari (Italy) -2.5+- 1.7 -0.7+_ 1.1 - 1.1 + 1.2
36.3 Nashville (Tennessee, US) -1.8+-1.4 -3.3+-0.7 -2.4+-0.8

36.1 Tateno (Japan) -0.7+-1.6 -0.5+0.8 -0.4+-0.7
31.6 Kagoshima (Japan) +0.9+1.7 +0.5+-1.0 +0.9_+0.8

30.4 Tallahassee (Florida, US) -1.7+-1.9 -0.2+-1.1 -1.3+-1.4

30.2 Quetta (Pakistan) -1.1+-1.6 +0.1+0.8 -0.7_+0.8

25.5 Varanasi (India) -0.3+-1.4 +0.4+-0.9 -0.2+-0.9
19.5 Mauna Loa (Hawaii, US) -1.5___1.7 0.0_+0.6 -0.9+-0.6

30°N to 60°N -2.5+-1.0 -0.5+-0.6 -1.4+-0.7
40°N to 60°N -3.0+0.9 -0.4_+0.5 -1.6+-0.6

30°N to 39°N -1.2+-1.5 -0.7+-1.0 -0.8+-1.1

1 Winter = Dec., Jan., Feb., March
2 Summer = May, June, July, August
3 Resolute is above the Arctic Circle, so that only less accurate moonlight measurements are available during actual
winter. These "winter" data are the averages for the months of March and April.

corrected data set, there are no real differences in overall pattern; the wintertime losses are

apparent in both Figures 4.36 and 4.38. The values given in Table 4.12 also refer to the

provisionally revised data set. However, the calculations have been performed in two slightly

different ways. In Table 4.12, the data period is from December 1964-November 1986. The choice

of December 1964 instead of January 1965 as starting date was invoked for seasonal consistency
when it became apparent that combination of months into "winter" (DJFM) and "summer"

(MJJA) groupings became desirable. In this sense, the data set for Table 4.12 begins with the

winter of 1964-1965. In the other, the calendar years 1965 through 1986 were used. Only minor
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numerical differences of no significance are found when December 1986 replaces December 1964

and the division point for the two 11-year periods is changed from December 1, 1975, to January
1, 1976.

Although there were no real differences in the pattern of a marked wintertime loss and mixed

indications of summertime change found in each data set, there were major changes at particular

stations. There is strong evidence of incongruities in many of the individual stations' published

records, and there are sound physical reasons for all of the corrections to the data. Thus, only the
provisionally revised data have been analyzed in greater detail; the results are presented and
discussed in Section 4.6.

4.5.4 Bismarck: A Single Station Analysis

The complete time series statistical analyses of the provisionally revised data sets are

discussed in Section 4.6. However before discussing the details, it is worth looking at the results

of the analyses from a single station--Bismarck--to develop an understanding of the different
phenomena that can affect total ozone. The statistical model used is described in full in Section

4.6 and will not be discussed here. The Bismarck data are marked with solid squares in Figures
4.36 to 4.39.

The daily total ozone data for Bismarck as reported to ODW covered the period from January

1963--December 1986, and are combined in ODW into 288 monthly averages. Some recalibration

corrections were applied to these data to obtain the provisionally revised set of monthly average

ozone values given in Appendix 4.A (i) of this chapter. When the complete 24-year data set is

divided into two 12-year periods, January 1963-December 1974 and January 1975-December

1986, a decline in average ozone concentration is indicated in the second period relative to the

first period, with the largest declines in the winter months, as shown in Figure 4.40. This simple
observation stands out in both the ODW (Figure 4.40a) and provisionally revised (Figure 4.40b)

data sets. The chief effect of the data recalibrations is (in this instance) to shift most monthly

differences to less negative values without affecting the magnitude of the winter-summer

spread.

The statistical assumption behind the calculations in Figure 4.40 effectively assumes that the

ozone values for each calendar month are independent of one another so that the full time series
can be divided into 12 separate series (i.e., all January values, etc.) without any loss of

information. Phenomena such as the solar cycle, the QBO, and the atmospheric nuclear bomb

tests around 1960, all of which are thought to affect total ozone, are ignored. This assumption of

independence is not justified because the full time series is autocorrelated: i.e., the ozone

concentrations in 1 month are influenced by the ozone concentrations in the preceding month. A

more rigorous statistical analysis should consider the data set as a whole and allow for any effects

on total ozone from known, or hypothesized, physical sources. Because its magnitude is clearly
very large, further consideration of the complete data set normally begins with description of the

seasonal cycle.

Time series statistical modeling of this data set can be most easily understood by considering

the consequences from the successive inclusion of the various terms mentioned in the model

description, although, in practice, many other model permutations were also calculated. The

first step is to fit to the data a model containing only the seasonal term. After removal of the

seasonal cycle, the residual series was then tested for autocorrelation and was found to exhibit

significant autocorrelation (about 0.2) for lags of 1 month and 2 months. None of the correlations
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Figure 4.40 Changes in Monthly Average Ozone Total Amounts at Bismarck, North Dakota, Between
January 1963-December 1974 and January 1975-December 1986. Using(a) the data as published in Ozone
Data for the Wor/c/and (b) the provisionally revised data, with monthly average corrections for instrument
calibrations applied to the data recorded in Ozone Data for the World.
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for 3 months or longer was statistically significant (all <0.1). When the terms for the auto-

correlation were added to the noise model, the residual variance decreased substantially, and the

autoregressive factors in the autocorrelation model were calculated to be 0.30 (1 month) and 0.16

(2 months). All subsequent calculations described below have included the autoregressive

coefficients for 1 month and 2 months as part of the basic statistical model. The meteorological

observations of the persistence of weather patterns are the underlying geophysical reason for the

positive autocorrelations with lags of 1 month and 2 months in the monthly average ozone
values.

The data were next tested for the importance of the QBO in its correlation with the ozone

abundance over North Dakota. The 50 millibar Singapore wind velocity was used to describe the

QBO, with westerly winds arbitrarily designated as positive. When the QBO was considered in

coincidence with the total ozone over Bismarck, the multiple regression calculation showed a
QBO coefficient of -8.0 ___3.6, a decrease of 8 DU from minimum to maximum in the QBO, versus

a yearly ozone average of about 350 DU. (The negative sign indicates that there is an anti-

correlation between total ozone and the Singapore wind speed measured from the westerly

direction; all quoted uncertainties in this section represent one standard deviation.) When tested

for ozone concentrations lagging 6 months after the tropical wind speed variations, the regres-
sion coefficient was very much smaller, + 1.0+_3.8 DU minimum-to-maximum. Further cal-

culations with the Bismarck data set were carried out with the zero delay QBO correlation.

The next statistical test was the inclusion of the nuclear bomb test parameter. This parameter

has been scaled linearly to the model results obtained with the Lawrence Livermore National

Laboratory 2-D atmospheric model using the ozone changes calculated for the latitude appropri-

ate to the station). The joint solution for Bismarck with QBO and the bomb tests maintained the
QBO parameter as -8.0 ---3.5 DU and indicated a nuclear effect with a coefficient of -0.44 ___0.49.

The magnitude of the ozone change associated with the aftermath of nuclear testing is given for

each month by the product of the coefficient and the model predictions of loss for the latitude

band containing the Bismarck station. The negative value of the coefficient indicates a loss of

ozone 44 percent as large as calculated in the model, but with an uncertainty (+49%) large

enough that a range of values from zero effect to the full magnitude of loss expected from the

model is still plausible. Because the data set for Bismarck does not begin until 1963, past the time
period for the maximum ozone depletion effect expected from nuclear testing, the nuclear test

coefficient is never of more than marginal significance for this data set. Greater statistical

significance could be obtained only if data were available for earlier periods, preferably en-

compassing the entire period of atmospheric nuclear bomb testing.

The multiple regression was then repeated with the further inclusion of a smoothed sunspot

series representing the parameter for the 11-year solar cycle, with the results:

QBO
Nuclear

Solar cycle

-7.8 + 3.4 DU/cycle

--0.21 + 0.49 times the model calculated depletions
+6.3+_3.3 DU.

The solar cycle coefficient implies that ozone readings at Bismarck were about 6 +_3 DU (about

2 - 1%) higher in 1979-1980 than they were during the adjacent sunspot minima in 1975 and
1986. All of these coefficients represent the statistical fit on the assumption that no long-term
trends exist in the total ozone data set.
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The basic calculation was next extended with the inclusion of a linear yearly ramp function for
which the long-term ozone concentrations were initially assumed to be constant, but then were

allowed to vary after some fixed date, with the slope of this ramp determined by statistical best-fit
techniques. Furthermore, the yearly ramp assumes that (a) any ozone variations that occurred

after the onset of the ramp were year-round in nature, with no seasonal or monthly differences

and (b) the variation is linear with time. These statistical results are the most comparable to

previous calculations with the data from Bismarck, differing only in the date at which the ramp
begins. Three different ramp starting dates were tested: January 1965, January 1970, and January

1976, with linear ramp coefficients k_5, k70, and k76, respectively; the coefficients determined for

these three ramps are given in Table 4.13. Because the data set began only 2 years earlier, the

value of the ramp coefficient k65 is almost the equivalent of a simple linear regression to the data.

Table 4.13 Parameter Values for Several Linear Ramp Statistical Calculations With Ozone Data
from Bismarck.

Start of Ramp 1965 1970 (i) 1970 (ii) 1976

Parameter

QBO
Solar

Nuclear

Trend (k)

Change in O3
concentration,
1963-1986

(Dobson Units)

8.2 + 3.2 8.6 --+3.2 7.9 + 3.0 8.1 - 3.2

5.5 + 3.5 5.3 _+ 3.5 5.6 _+_3.1 5.5 __+3.5

-0.92 --- 0.52 -0.70 _+ 0.48 -0.67 + 0.40 -0.50 -+ 0.46

q).48 _+ 0.18 -0.53 _+ 0.20 -0.55 + 0.18 -0.83 + 0.33

-10.6 + 4.0 -9.0 _+ 3.4 -9.4 + 3.1 -9.1 + 3.6

The units for these coefficients are: QBO--Dobson Units for a + 40 meter/sec shift in wind direction from easterly to
westerly (approximately the average shift at 50 mb from maximum easterly to maximum westerly direction;
Solar--Dobson Units for a + 150 change in sunspots, approximately the increase that occurred between solar
minimum in 1975-1976 and solar maximum in 1979-1980; Nuclear--the numerical coefficient multiplied onto the
calculated ozone depletion from the LLNL 2 D model; Trend--in Dobson Units per year (e.g., -0.48 ---0.18 DU/yr); for
22 years, from 1965-1986, this coefficient signifies a total ozone change of 22k, or -10.6 _+4.0 DU.

The column 1970 (i) contains the results using an autocorrelated noise term with 1- and 2-month lags, while column
1970 (ii) contains those for a noise term including just a 1-month autocorrelation coefficient.

An amplifying comment about the calculation of a "yearly ramp coefficient" is appropriate at
this juncture. The natural variability of monthly average ozone values at Bismarck (and other

north temperate and polar stations) is substantially larger in winter than in summer, as

illustrated in Figure 4.34 for Arosa. Overreliance on fitting the highly variable winter data is

normally suppressed by weighting each of the data points in the residual series according to the

natural standard variation of the calendar month represented by the residual.

The coefficients for the QBO and the solar cycle are largely unaffected by the inclusion of
ramps. This finding is typical of almost all of our calculations with the various stations. The

apparent general conclusions from statistical modeling of the Bismarck data with the assumption
of a constant ramp coefficient throughout the year are (a) a QBO effect of about 8 + 3 DU in all

calculations, (b) a year-round decrease of 9 --+3 DU in total ozone at the beginning of 1987 relative

to the concentrations observed prior to 1965, prior to 1970, or prior to 1976, (c) a solar cycle

increase of about 5.5 DU for 1979-1980 versus the minima on either side, and (d) an appreciable
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effect from nuclear bomb testing in the early 1960's, though the significance is not statistically

robust because the Bismarck data start in January 1963, roughly coincident with the maximum

predicted bomb test effect. Only minor numerical differences were found for the two 1970 ramp

calculations with only 1-month autocorrelation, or with both 1- and 2-month autocorrelations
included.

Exceptions to the general statement that QBO and solar cycle coefficients are generally not

affected by the inclusion of ramps can be found with stations for which the record is short. The
correlation between the ramp and the solar cycle is then larger, but the QBO coefficient usually

remains stable in these cases. The correlation of the QBO and solar cycle parameters is low--less
than 0.1 in all the analyses for Bismarck and similarly low for other stations. No attempt has been

made in this study to investigate the possibility that the QBO effect on total ozone might be

different at different stages of the solar cycle. An analogous finding has been reported for their

joint effect on stratospheric temperatures (Labitzke and Van Loon, 1988). By contrast, the

nuclear bomb test parameter is fairly strongly correlated with the ramp and solar cycle param-
eters. For the 1963-1986 record at Bismarck, the correlations for the model, in which all three

geophysical phenomena were included, are:

Bomb Test Parameter

(a) Ramp

Correlation With

(b) Solar Cycle

Yearly Ramp Starting in

January 1965 0.53 0.29
January 1970 0.40 0.31

January 1976 0.26 0.31

Addition of the terms describing these geophysical phenomena which may affect total ozone

does change the noise term in some cases, nearly always simplifying it. As more of the variability
in the data is explained by the inclusion of such terms, the noise is reduced and its structure

should become clearer. In the case of Bismarck for the model in which the QBO, the solar cycle,

the nuclear bomb testing and a linear ramp starting in January 1970 are all included, the

autocorrelation factors are calculated to be 0.25 + 0.06 for the 1-month lag and 0.11 + 0.06 for the

2-month lag. These factors are essentially the same as those (0.30, 0.16) found without any of the

geophysical parameters included. When the noise term was changed so that it included only the

1-month autocorrelation factor, little change was found in the statistically calculated geophysical
parameters. In the results quoted in this chapter, the better noise term (i.e., 1-month or 2-month
autocorrelation) for that particular model is used.

However, the assumption of a year-round constant loss of ozone, either in DU or in

percentage of total ozone, is not consistent with the general appearance of the Bismarck data as

graphed in Figure 4.39, which indicates substantially larger losses in the winter months, or of the

data from many other Northern Hemisphere stations graphed earlier in Figures 4.36 and 4.38.
Alternative analyses for trends have been calculated with a model that provides each calendar

month with a separate linear regression coefficient after a certain date--i.e., 12 separate ramp

coefficients. These calculations have also been carried out in conjunction with most per-

mutations of the three geophysical terms. In this model, each month is treated as independent

with respect to the pattern of any changes in average amount of ozone (but still with auto-

correlation for 1 month and 2 months); then the values of these 12 ramp coefficients can be

determined, together with their standard statistical uncertainty. The results from models with
ramps beginning in 1970 and 1976 are summarized in Table 4.14. The total data set includes 24

249



TOTAL COLUMN OZONE

years, or slightly more than two solar cycles. We have calculated these ramp coefficients using
the entire 24 years, and with the final 22 years (i.e., two solar cycles) beginning in January 1965.

In the latter case, any effects on total ozone from nuclear bomb testing are sufficiently in the past

that we have not included the nuclear parameter in the linear regressions.

Table 4.14 Statistical Analyses of Ozone Data From Bismarck.

Coefficients of various analyses that allow for differing monthly trends and including some or all

of the variables for the QBO, the solar cycle, and the predicted nuclear depletion. Data for 24
years, from January 1963 to December 1986.

JA70 -1.10 + .53 -1.10 + .51 -1.25 + .51

FE70 -1.08 + .57 - .98 --+ .54 -1.19 ___ .54

MA70 -1.53 _+ .55 -1.51 + .53 -1.73 + .53
AP70 - .73 + .53 - .72 ___ .51 - .92 + .52

MY70 - .78 + .48 - .79 + .46 - .96 -+ .46

JN70 - .56 --+ .37 - .59 + .36 - .73 + .36

JL70 - .37 + .30 - .41 __+.29 - .53 + .29
AU70 - .09 + .33 - .14 + .32 - .25 + .32

SE70 + .30 + .30 + .23 + .29 + .12 + .30
OC70 - .02 + .43 - .09 - .41 - .22 + .41

NO70 - .26 + .60 - .31 + .58 - .46 _ .58

DE70 - .69 --+ .57 - .71 + .55 - .86 + .55

QBO -6.74 _+2.87 -7.20 _+2.82

SUNS +7.42 _+2.90 +5.54 _+ 2.97

NUC - .80 -+ .38

JA76 -1.84 _+ .82 -1.81 + .81 -1.85 + .79 -1.95 + .79
FE76 -1.09 + .89 -1.05 +_ .87 -1.01 -+ .85 -1.16 + .85

MA76 -2.28 + .86 -2.22 + .85 -2.27 + .83 -2.42 + .83

AP76 - 1.39 + .84 - 1.35 __+ .83 - 1.40 -+ .81 - 1.54 + .81

MY76 -1.43 _+ .76 -1.40 _+ .74 -1.45 _+ .73 -1.58 + .73

JN76 - .96 + .59 - .96 + .58 -1.01 __+.57 -1.11 -+ .57

JL76 - .62 + .47 - .65 + .47 - .69 -+ .46 - .78 + .46

AU76 - .40 + .53 - .45 + .52 - .48 + .51 - .57 + .51
SE76 + .42 + .48 + .34 + .47 + .32 -+ .46 + .23 -+ .46

OC76 - .04 + .68 - .14 + .67 - .16 + .65 - .25 + .65

NO76 - .48 _+ .95 - .56 + .94 - .58 + .92 - .68 _+ .91

DE76 - .92 + .90 - .98 + .89 - .97 __+.87 -1.08 + .87

QBO -7.36 -+3.28 -6.86 +2.84 -7.20 -+2.85

SUNS +7.45 +6.13 +6.14 -+3.00

NUC - .55 + .37

The top row contains the analyses where the ramps start in 1970, while the bottom row has those for 1976. JA70 is the
trend coefficient for January, FE70 that for February, etc., where the ramp starts in 1970. Similarly, for 1976 there are
JA76, FE76, etc. The units are DU yr -1. The QBO coefficient has units of DU per (40m s4), and the solar cycle (SUNS)
coefficient is in DU per 150 sunspots. The nuclear coefficient (NUC) should be used as a multiplying factor to the
function shown in Fig. 4.44.
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Several comments can be made about the various statistical treatments of the same data set:

The coefficients for the solar cycle and QBO contributions to ozone change are not

significantly altered by the introduction of either yearly or monthly trend coefficients, or by

the choice of 1965, 1970, or 1976 for the beginning of the ramp.

The yearly average ozone loss calculated with monthly trend coefficients is somewhat

larger than calculated from a yearly trend coefficient. The chief cause for this difference is

that each month is evenly weighted in the average of the monthly trends, while the summer

months, with their smaller natural standard deviation and smaller ozone changes, are more
heavily weighted in the determination of an overall trend fitted to all months

simultaneously.

• The indicated change in ozone for individual months is approximately the same for trends

fitted since 1970 and 1976, indicating that most of the change has occurred following 1976.

4.6 DETAILED ANALYSIS OF THE PROVISIONALLY REVISED GROUND-BASED
DATA

In most Temperate Zone locations, the total ozone column concentrations are observed to

vary regularly with the season, peaking about the beginning of spring and reaching a minimum

in early autumn. Any statistical model used to treat total column ozone data must satisfactorily

allow for this seasonal cycle before it can determine whether any other significant pattern is
present in the data. Most statistical analyses (Angell and Korshover, 1983b; Angell, 1987b;
Bloomfield et al., 1983; Hill et al., 1977; Oehlert, 1986; St. John et al., 1981, I982) remove the

seasonal cycle by converting the monthly averages into residuals representing the deviation of

the monthly average in an individual year from the long-term average for that given month. This

procedure assumes a constant seasonal cycle over the years and produces a series of 360 numbers

for a 30°year period, or 264 for a 22-year period. These statistical treatments then deal with the

data from each station as a sequence of consecutive "deseasonalized" deviations from long-term

monthly averages. Reinsel et al. (1981, 1981, 1987, 1987) use a sine curve and its harmonics to
describe the seasonal cycle rather than the monthly averages, but the underlying assumption is

still that the seasonal cycle does not change.

In either case, the next step in the previous statistical modeling has been to assume that any

secular change introduced into the ozone pattern would have a constant effect over the year, so

that it can be described by a single trend coefficient. Because this approach has been applied to

the monthly average ozone data in numerous earlier publications, it has also been applied here to
all of the individual station data. Summaries of the yearly ramp coefficients calculated for these

stations are given in the bottom lines of Appendices (a)-(f) under B(i). However, these yearly

trend coefficients are now deemed inappropriate for description of the ozone variations actually

occurring in the atmosphere.

4.6.1 Method of Analysis

Concern for the possibility that man's activities might be affecting the concentrations of

stratospheric ozone has continually raised the question of whether any recent change has been

detectable in measurements of total ozone. The customary approach has been to ask whether
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changes have occurred during the past decade or two, rather than uniformly over the entire

period of record. The most frequent test assumption has been the division of the data record into

an earlier portion, assumed to have been constant, and a later portion to which a straight line has

been fitted, joining smoothly to the constant from the early record and with the slope of the

second part determined by least-squares fit to the data. This straight line, with its slope as a
parameter to be fitted, has been designated as a "ramp," and the resultant combination of a

constant value for the early time period and a later, usually sloped, section has been described
colloquially as a "hockey stick" function (see Figure 4.41). Such a mathematical function makes

no pretense of having direct geophysical significance, but is simply one approach to the question

of whether or not the best statistical fit to the entire data set indicates changes from the long-term

average over the most recent period. The sign of the change is not fixed, and calculations have

been presented that have + signs for the ramp with certain stations, indicating more total

column ozone in recent measurements than earlier, and - signs for other stations, indicating a
loss of ozone in the more recent data.

A less frequently used alternative to the ramp formulation has been the application of a

hypothetical trend of ozone versus time based on some approximation of the geophysical
circumstances, usually from an atmospheric model. In this situation, the shape of the modeled

ozone variation versus time has been assumed to be fixed, but its magnitude has been treated as a

free parameter, allowed even to assume the opposite sign from that implied by the geophysical

simulation. The geophysical utility of such a free parameter is obviously marginal when the fit to

DESCRIPTION OF TREND

a) MONOTONIC, YEAR-ROUND. ('HOCKEY STICK')

b)

T(i,j)

I i I i I i I

1960 1970 1980 1990
v

SEPARATE 'HOCKEY STICK' MODELS FOR EACH
CALENDAR MONTH

12

T(i,j) = _ kj.(i-io).BjL
L=I

= kj (i- i)
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AND T(i,j) = 0 i_<io

Figure 4.41 Description of trend (a) monotonic, year-round (hockey stick) and (b) separate hockey stick
models for each calendar month.
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the available data indicates that the sign of the change is incorrect---for example, if ozone were
actually found to be increasing when ozone depletion has been calculated in an atmospheric

model. In such a circumstance, the value of the parameter for the magnitude of the assumed

functional form has no more significance than the value of a ramp coefficient--neither has any

direct geophysical significance.

Another important difficulty that exists with this approach of using a geophysically based

functional form taken from an atmospheric model calculation has been the lack of constancy in

the predicted patterns of ozone change with improved measurements of pertinent parameters.

The most frequent changes affecting the time pattern of ozone concentration in atmospheric

modeling have originated with improvements in the chemical and photochemical bases used for

the modeling, and in the expansion of the photochemical model itself from the 1-D models of the
1970"s to the 2-D models of the 1980"s: a new compound is proposed for inclusion, a new

chemical reaction is proposed, a reaction rate constant is reevaluated, the time pattern is found to

vary with latitude, etc. Over the past 10 or 15 years, in a typical atmospheric model the calculated

ozone trend versus time of ozone concentrations has usually been nonlinear and often not even

monotonic. Model improvements have often caused changes in the magnitude of predicted

long-term ozone depletion and have usually been widely noted, but the patterns of ozone

variation with time have also been altered in the process. These apparent changes in total ozone

versus time have had many different functional forms over the past 14 years, including several

that have called for slight minima or maxima in the ozone changes during the 1970's and 1980's.
Without consistent agreement about the geophysically expected shape of ozone variation with

time, each such statistical calculation would become obsolete with the next change in the

evaluation of reaction rate constants. Fundamentally, the reliance on ramp coefficients fitted to

the external data without any preconceived geophysical model simply tries to answer the

question of whether variations in ozone concentrations are occurring in the environment, quite

independent from the current state of atmospheric model calculations.

The procedure adopted in most statistical calculations until now has been the determination

of a single linear ramp coefficient from the accumulated series of all of the monthly residuals.
Implicit in this choice of modeling is the assumption that any ozone variation that may have

taken place from the long-term averages has occurred consistently throughout the year. How-

ever, this approach will be misleading if the basic assumption is not correct: if the perturbation to

the previous ozone pattern has a seasonal dependence of its own, then the assumption that the

perturbation has equal effect over the entire year can produce substantial distortion in attempts

to interpret the data. The distortion is more pronounced when the variability (and the statistical

weighting) of the data is itself seasonally dependent, as is the case with total column ozone
measurements at most Temperate Zone stations, for which the ozone distributions exhibit larger

variances in the spring than in the autumn, as shown for Arosa in Figure 4.34. The situation can

be further illustrated with a hypothetical two-component model.

Suppose (a) that the ozone concentrations in a particular location followed a steady pattern

during the months from April through September for 20 years without change and (b) that the
ozone concentrations from October through March followed a steady pattern for 10 years, and

then declined linearly for the next 10 years with a ramp coefficient -k. If these two hypothetical

components are equally weighted, then the resulting data fit of a single yearly ramp will produce
constant values for the first 10 years, and then a declining ramp for the next 10 years, with a slope

that is the direct average of the ramp for (a)--i.e., zero--and -k for (b)--and will have the value

-k/2. If either of the hypothetical components has a smaller natural variance and is weighted

accordingly, then minimization of the total variance will influence the composite ramp toward
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the slope of the component with this smaller variance. In the hypothetical extreme that one of the

components is known with infinite accuracy and the other is not, then the composite ramp will fit

the accurately known component and force this shape upon the other data set. A few years ago,

there were no geophysical reasons that led to the expectation that perturbations to total column
ozone would have equivalent effects throughout the year or, conversely, that they would not. In

this situation, the assumption of a single ramp coefficient equally applicable throughout the year

is the simplest to apply, and is the procedure that has been widely used. Such statistical

calculations also produce results most comparable to the predictions of 1-D photochemical
models because their structure does not include information on possible seasonal or latitudinal

variations. However, when the actual data disclose seasonally dependent changes in the

magnitude of perturbations over time, as in Figures 4.36-39, the statistical model with a single

ramp coefficient applicable throughout the year is no longer an appropriate model for treatment
of the data.

A much more elaborate model, which allows for the possibility of different degrees of change

on a monthly basis, replaces the single yearly ramp coefficient with 12 separate coefficients, I for

each month. An approximation to the expected results can be obtained by separating the
residuals into a series for each month and then calculating the appropriate ramp coefficient for

each of the 12 separate data sets. Such separation into 12 series does not take into account the
existence of short-term autocorrelation and can produce misleading error estimates. An alterna-

tive calculation can be performed on the complete data set with autocorrelation included and 12

separate ramp coefficients. The latter procedure has been used regularly in our calculations.

One interesting result from this monthly component evaluation is that strong differences are

found to exist among the ramp coefficients, as expected from the observations of seasonally

dependent differences in Figures 4.36-39. Many of the ramp coefficients are found to be strongly

negative, others zero, and some positive. In addition, the yearly ramp coefficients are not

approximately equal to the average of the 12 monthly coefficients, but are often quite different

from the average.

Various possible influences on total column ozone exist that should be accounted for while

determining a trend. Four important processes have been identified that can lead to changes in
total column ozone, but that are not part of a long-term trend. The largest such effect is the

seasonal variation caused by the atmospheric circulation. All data treatments begin with a

method or function to account for this. Another known, cyclic process is the variation in the

intensity for some wavelengths of solar ultraviolet radiation as part of the 11-year solar cycle.

Because these wavelengths correspond to UV energies large enough to photodissociate O2 and

thereby create more 03, a plausible connection exists by which total ozone is correlated with

these solar cycles. Probably the best known manifestation of the solar cycle is the waxing and

waning in the numbers of sunspots, for which accurate records are available for the past 250

years. The series of measurements at an individual station can be tested for the importance of a

solar cycle effect through inclusion of a term attempting to mimic the response of the atmosphere
to these solar variations. In our calculations, we have used the running 12-month average of

sunspots to provide the functional form of any atmospheric response, as shown in Figure 4.42.
(Sunspot data are provided by the National Geophysical Data Center, Boulder, Colorado.)

A set of related geophysical phenomena exists that includes the shifting geographical origin

of the Asian monsoons; the differences in atmospheric pressure over tropical locations such as

Darwin, Australia, and Tahiti; and the approximately biennial change of the direction of the

zonal winds at altitudes of 15-30 km in the Tropics. The tropical zonal winds in the lower
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Figure 4.42 Smoothed sunspot cycle 1957-1986

stratosphere, for example, will tend to blow from a westerly direction for about a year, and then

switch to an easterly direction for the following year, etc. The actual time period for a complete

cycle in these tropical wind directions is somewhat irregular, averaging about 26-27 months, and
is designated by the term quasi-biennial oscillation, or QBO (Reed et al., 1961). The amounts of

total ozone (and the stratospheric temperatures) over particular measuring stations have long

been known to have a cyclical variation in correlation with the QBO. In our statistical modeling,

we have included the QBO through a term proportional to the zonal wind velocity at 50 millibars

pressure (about 20 km altitude) over Singapore, as shown in Figure 4.43. The Singapore data are

chosen simply because they provide an available, consistent, numerical set. Comparable

changes take place at all longitudes within a few clays as the winds reverse throughout the
equatorial zone. However, the directional wind shift does not occur simultaneously at all
altitudes, but works downward from above, so that the shift at the 30 mb level is followed in a

month or two at 50 mb and then, after another delay, at 100 rob, etc. The QBO parameter could

also be based on 30 mb or 100 mb wind velocities, with corresponding changes in the phase

relationship between ozone and the QBO. The correlation of ozone changes with the QBO is

known to be delayed at higher latitudes, and we have allowed for such delay by testing two

ozone-QBO correlations for each station: no delay versus a lag of 6 months in the ozone response
to a QBO shift.

Finally, nuclear bomb tests conducted in the atmosphere during the late 1950's and early
1960"s are a known source of nitrogen oxides, which can change ozone concentrations in the

stratosphere. The time variations of the proxy variable accounting for such changes has been
shaped from the time behavior of the ozone changes at each latitude calculated with the LLNL

2-D atmospheric model, as shown in Figure 4.44. The magnitude of the coefficient for the nuclear

bomb testing is then determined statistically.
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4.6.1.1 Description of the Statistical Model

The approach used in the analysis of the revised data has been to fit to the ozone data a model

of the general form

oz(i,j) -- S(i,j) + X(i,j) + T(i,j) + N(i,j).

The term S(i,j) describes the seasonal behavior; X(i,j) is a term that describes other phenom-

ena (geophysical in origin) that can affect total ozone; T(i,j) is a term that describes a possible

long-term trend in total ozone; N(i,j) is a term that describes the noise; i denotes the year; andj

denotes the month. The overall approach is thus similar to that of Reinsel et al. No detailed

comparisons are made here with the results from previous studies.

The seasonal variation is accounted for by allowing each month's long-term mean to be

determined separately:
12

s(i,y) =
1=1

where 3jr is a delta function that allows only I month's value to be nonzero for each reading. The

chief advantage is that no predetermined functional form is forced on the data. (Note that

deseasonalization of the data prior to analysis by subtracting the appropriate long-term monthly
mean from each monthly value still eliminates the same number of degrees of freedom.)

The three phenomena that are thought to affect total ozone and that are included in this

analysis of total ozone data are the QBO, the solar cycle, and the bomb tests in the late 1950"s and

early 1960's. The proxy variables used are, respectively:

• The 50-mbar east/west wind velocity at Singapore.

• A smoothed series of sunspot numbers made up of the averages of each pair of consecutive

12-month running means.

The effect of the bomb tests on total ozone calculated by the 2-D LLNL photochemical

model of Wuebbles et al. In these analyses, the bomb test effect is taken as the difference

between a calculation that included the effects of the solar cycle, the nuclear bomb tests, and

increases in trace gas concentrations, and one that included just the trace gases and the

solar cycle. The ozone changes are calculated in this 2-D model for different latitudes but

not different longitudes.

The term in the model that tests for trend has usually had the form of the hockey stick (shown

in Figure 4.41). Many analyses have been performed for this report using this form with the ramp

starting at three different times: January 1965, January 1970, and January 1976. The first and the
last were chosen as corresponding closely to minima in the solar sunspot cycle (as is the end of

the series), thus ensuring that any residual solar cycle effects not accounted for using the

sunspots have as little influence on the trend coefficient as possible. This model postulates that
any loss of ozone will occur as a steady year-round loss, and does not allow for the possibility that

losses occur predominantly in one or two seasons. A more elaborate form of T(i,j) has also been

used in which a separate ramp is included for each month:
12

l=1
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Again, 3jl is a delta function and so has the effect of including only 1 month's trend coefficient
for each month's data. The results from the year-round and monthly models are discussed later.

Last, the autocorrelation within the time series is accounted for in the noise term N(i,j).

4.6.1.2 Autocorrelation

The deseasonalized data series of monthly residuals has been tested to determine whether a

correlation exists between successive monthly values. For example, if the September residual is

positive in a given year, is the probability that the October residual will also be positive in that

year greater than 50 percent? Such tests show that with ground-based stations, significant

positive autocorrelation is always observed in the monthly values for a 1-month delay and
frequently for a 2-month delay--both October and November are more likely to be positive after

a positive residual in September. The autocorrelation coefficients are, in most cases, no longer

statistically significant after 2 months. Such 1-month and 2-month correlations are geophysically
plausible because of the tendency of weather patterns to persist. Because such conditions are

often specific to geographical locations, no requirement exists that the same tendencies toward

autocorrelation be exhibited at all groundstations worldwide. No tests have been made of more

elaborate geophysically based hypotheses of autocorrelation--e.g., that the probability of a
positive value in November following a positive October is different from that for June following
a positive May.

The autocorrelation coefficients for ozone data within a latitude band, e.g., 40°N to 50°N, are
larger than those for an individual station. For example, the autocorrelation coefficient for a

1-month delay is approximately 0.6 in satellite data for the average ozone concentration in a

latitude band in comparison to the typical values of 0.2 found in groundstations in the same

band. The difference in these coefficients presumably reflects the fact that motion eastward or

westward can carry an air mass away from a groundstation, removing the autocorrelation at that
station, but maintaining it in the latitude band. Thus, while a new air mass is detected at the

station, the old air mass still contributes to the latitudinal average and continues to maintain
some correlation between successive monthly values.

4.6.1.3 Weighting Procedures: Intra-Annual and Interannual Variations

Considerable differences exist in the year-to-year variations for the ozone values in different

months. The standard deviations of the 12 monthly sets of 24 years of data from Bismarck are

given in Table 4.15. These standard deviations are a measure of the year-to-year variation of the
months and can be called the interannual standard deviations. Also shown in Table 4.15 are the

averages of the standard deviations for the individual months calculated from the daily readings
(mean intramonthly standard deviations). Both series show the same annual pattern with a

maximum variability in the late winter and early spring and a minimum in the autumn.

In a least-squares analysis of the data, some kind of weighting should be used to ensure that

each month contributes equally to the residual variance. If an unweighted analysis of the data is

made, then the months with the largest interannual standard deviations will be the largest

contributors to the residual variance, and these months will, in effect, be dominating the analysis
at the expense of the months with smaller interannual standard deviations. In order to allow

each month to be equally important in its contribution to the variance during the analysis, each
monthly value should be weighted by the appropriate interannual standard deviation.
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Table 4.15 Monthly Means and Standard Deviations at Bismarck (in DU).

Mean

Interannual Intramonthly
Standard Deviation Standard Deviation Mean

Janua D, 16.4 34.9 367.5

February 17.7 40.6 391.8
March 17.2 35.4 400.0

April 16.9 30.8 387.2

May 15.2 26.8 370.7
June 11.9 23.8 345.9

July 9.5 16.5 324.1

August 10.6 14.9 310.5

September 9.6 20.0 301.0
October 13.6 23.3 296.5

November 19.1 26.3 317.0
December 18.2 32.5 339.0

A separate issue is whether to weight each month to allow for the variability within that

month and the number of readings taken therein. To do this correctly requires using each

individual standard deviation. It is a matter of debate whether the intramonthly variation need

be considered in an analysis of monthly data, as the variability is on a very different time scale to
that of the interannuaI variability and can effectively be considered unrelated. Two other factors

complicate this type of analysis. First, the observed strong day-to-day autocorrelation within a

month reduces the independence of the daily readings. This can be seen by looking at the ratio of
the intramonthly standard deviations to the interannual ones. If all of the daily readings were

independent, this ratio would be approximately the square root of the number of readings within

that month, i.e., a factor of 4 to 5.5. Instead, it would appear that the number of "independent"

readings in a month is, typically, about four, because the usual difference between the two

columns is only a factor of two. This number is roughly the same as that for other midlatitude
stations. Second, a trend versus time is found within most months so that the calculated

standard deviation of a sample about a constant mean is not actually appropriate.

The statistical calculations were carried out using the SCA Statistical System (Version 3). The

Gauss-Marquardt algorithm in this system implies a constant variance within the time series

being analyzed, and the package does not include a weighting option. Accordingly, the monthly

data of each variable were premultiplied by the inverse of the appropriate standard deviation

(i. e., February values for all the variables included in the calculation were divided by February's

standard deviation). Apart from the autocorrelated noise, this procedure is the same as a classical

"sigma-squared weighting" routine, because the weighting by the standard deviation is squared
before the calculation of the residual variance, the quantity that is minimized. Interannual

standard deviations were used in all the analyses unless specific mention is made. For a few

stations, the average of the intramonthly standard deviations was also tested, and no important

differences were found in the estimates of the various parameters. Small differences were found

in the uncertainty estimates for the parameters, but the two different weighting methods

produced the same results within the uncertainties calculated. Only for the Bismarck data set

was a calculation carried out in which each data point was weighted by its own intramonthly

standard deviation. Again, no important differences were found in the results.
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4.6.1.4 Missing Data

In most station records, months exist during which no readings were taken. These missing

data might be caused by any one of a number of reasons--the instrument was undergoing
calibration tests or an overhaul, the absence of the instrument technician, or some other similar

reason. There are also many months in which only a few readings were taken, and, because of

the large intramonthly standard deviations, the averages of these months might not be con-

sidered representative. As mentioned in Section 4.3.4, in the preparation of the provisionally

revised data sets found in the Appendix to this chapter, every month with fewer than 13 daily

readings was deemed to have had no usable monthly average. After the first set of revised data
had been prepared, the missing monthly data were replaced as follows:

• With 2 or more consecutive months without a usable monthly average, the long-term
monthly means for those months were used.

• If only I month was missing, the value substituted was that of the long-term monthly mean,

adjusted by the product of the average of the 2 neighboring months' normalized deviations

(actual deviation divided by standard deviation) and the standard deviation for the missing
month.

4.6.2 Results From Individual Station Data

One major purpose of this report has been analysis of the existing record to find the
magnitude, nature, and significance of any detectable changes in the amount and distribution of

ozone in Earth's atmosphere. As described in Section 4.3, the published data on total ozone have

been critically examined, and a set of provisionally revised data has been produced for many
stations. A comparison of the results of an initial analysis of the original and revised data sets

based on Dobson instruments shows that the provisional revision produces no substantive

change in the behavior of the stations as a group, although in individual cases significant

changes are seen (Figures 4.36-39). The data revision does result in greater consistency among

the stations at similar latitudes, as might be expected if the cause(s) of any changes are global in
nature rather than the consequence of some alteration in the close vicinity of the station. This

greater consistency provides more confidence in the significance of latitude band averages; no

attempt was made to construct latitude band averages from the original ODW data, so that no

quantitative estimates are possible of reductions in the uncertainty estimates from the ODW to
the provisionally revised data sets.

Various multiple regression analyses, then, have been made on the provisionally revised
Dobson data, with the results described in the following sections. First, the analyses of the

individual stations are considered. Next, there is a discussion of the analyses of the Dobson

latitudinal band averages, together with some comments on the formation of these averages.

Finally, the results from four regional averages of the total ozone data measured with the M-83

filter instruments are presented. In general, the conclusions to be drawn from the M-83 data
parallel those from the Dobson data.

The statistical treatment of the total ozone data from the Bismarck station has been described

in detail earlier in this chapter to illustrate the various influences acting on total ozone. Many

possible statistical models have been tried with various combinations of the QBO, the solar cycle,

and the effect from the atmospheric testing of nuclear weapons. The model results also depend

upon whether a year-round trend is assumed or whether differing monthly trends are allowed.

Still more analyses can be made by changing the time period being analyzed and the starting

260



TOTAL COLUMN OZONE

dates of the proposed trends. The symbols used in the Appendix to this chapter list the effects

included (Q for QBO, S for solar, and N if the bomb test parameter has been included) and the

last two digits of the year in which the linear trend begins; e.g., QS70 describes an analysis

including parameters for the QBO, the solar cycle, and a ramp beginning in 1970. Two possible

QBO parameters were tested for each station; it was found that the one with zero lag (i.e., using

concurrent monthly averages for the 50-mbar Singapore wind speed and the total ozone) was the

more significant for nearly all stations except those between 19°N and 40°N. When the
Singapore wind speed was lagged 6 months behind the ozone value, the stations in the
19°N--40°N band showed better correlation than for the concurrent values. Thus, the concurrent

values are given for all stations outside this band, while the values found using the lagged QBO
variable are given for the stations inside this band. The QBO effect will be discussed in more

detail later in this chapter.

The results of 12 multiple regression models used to describe the data of the individual

stations are given in Appendix 4.B.(i). Two selections of possible time periods for data to be

analyzed have been made. In parts (a) and (b), monthly ozone averages measured between

January 1965 and December 1986 are analyzed, while in parts (c) to (f) all data after January 1957

are treated. The quality and reliability of the band average data are much better after 1963, chiefly
because many more stations are available (the U.S. station data effectively begin in 1963), and the

pre-1965 data are complicated by the extensive atmospheric testing of nuclear weapons. For these

reasons, the primary emphasis in our determination of statistical trends has been placed on band

average and station data since January 1965. However, for completeness of record, station data

prior to 1963 have also been included. Data prior to the International Geophysical Year

(1957-1958) are so scarce that very little consideration has been given to any records before 1957.

Year-round and monthly linear trends starting in 1970 are calculated in parts (a), (c), and (e),

whereas (b), (d), and (f) represent tests for trends starting in 1976. All models include terms for

the QBO and the solar cycle, and parts (e) and (f) also include the term for the calculated
atmospheric bomb test effect at the appropriate latitude. The parameters given in the tables for

the geophysical effects are those calculated in the models that include individual monthly

trends. The equivalent coefficients found from the year-round trend model are essentially the

same, as illustrated earlier with the Bismarck data. It should be noted that not all stations provide

data records suitable for testing by all six models, for various reasons: stations whose data record

starts after 1965 are not tested for the nuclear effect, nor are those in the Southern Hemisphere

where the bomb test effect is predicted by model calculations to be negligible; stations whose

records start after 1976 are tested only for a trend starting in 1976.

4.6.2.1 Changes Between 1970 and 1986 Using Data From 1965 Onward

In the first part of this discussion, only data after 1965 are considered, the linear trends are

taken as starting in 1970, and terms for the QBO and the solar cycle are included. All of these

results are given in Appendix 4.B.(i).(a). Table 4.16 contains the summer and winter trends for
the stations for which provisionally revised data are available. This table is similar to Table 4.12,

where the differences in the monthly means between two 11-year periods, 1965--1975 and

1976-1986, are given. The figures in Table 4.16 represent trends in DU per year. The stations are

divided according to the latitude bands in which they lie. It can be seen that the more northerly

stations have larger wintertime (DJFM) losses than the more southerly stations: the simple

arithmetic DJFM averages for the three sets of stations north of 30°N are -1.62, -1.09, and -0.28

DU per year for 53°-64 °, 40°-53 °, and 30°-39°N, respectively. These compare to average sum-
mertime (MJJA) trends of + 0.02, -0.39, and -0.36 DU per year for the same three bands.
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Table 4.16 Winter and Summer Trends for Individual Stations

Station Summer Trend Winter Trend

53°-64 °

Reykjavik* + 1.49 ___.79 - 2.98 _+1.51
Lerwick - 0.53 +- .27 - 1.59__ .47

Leningrad* - 0.18 +- .35 - 1.58 -+ .75
Churchill - 0.44 + .32 - 1.37-+ .48

Edmonton + 0.05 +- .31 - 1.56 +- .55

Goose - 0.27__ .31 - 0.65 +- .53

40o-52 °

Belsk + 0.02_+ .29 - 1.55 +- .57

Bracknell* - 0.62 +- .30 - 1.43 +- .57

Uccle* - 1.31 + .45 - 0.87 +- .80

Hradec Kralove + 0.20 + .32 - 2.06_ .60

Hohenpeissenberg* - 0.19 + .26 - 0.69_+ .52
Caribou - 0.35 +- .26 - 1.48 ___ .55

Bismarck - 0.54 -+ .29 - 1.15 + .41

Arosa - 0.51 ___.23 - 0.96 _+ .50

Toronto - 0.56 _+.28 - 0.82 +- .53

Sapporo 0.00___ .29 - 0.43 -+ .46
Rome + 0.10 +- .26 - 0.70 _+ .44

Boulder - 0.96 + .23 - 0.96- .40

300-39 °

Cagliari Elmas - 0.48 +- .28 - 0.64 + .45

Wallops Is.* - 0.39 --- .34 - 0.30 + .70
Nashville - 1.02 _+.25 - 0.74 +- .42

Tateno - 0.19 +- .25 - 0.10 +- .48

Srinigar - 0.25 +.22 - 0.30 +- .38

Kagoshima - 0.19 + .24 + 0.19 +- .30
Quetta* + 0.01 _+.26 - 0.23 ___ .47
Cairo* - 0.34 +- .42 - 0.76 + .95

Mauna Loa - 0.07--- .16 - 0.36 + .33

Southern Hemisphere

Huancayo - 0.16 + .09 - 0.20 +- . 10
Samoa* - 1.24 _+.39 - 1.13 --- .30

Aspendale - 0.69 +- .20 - 0.61 _+ .31
MacQuarie Isle + 0.15 + .39 + 0.36 +- .53

Trends are shown as Dobson Units per year. They are calculated using the data from 1965 onward with the ramp
starting in 1970. An asterisk (*) denotes those stations whose records start after January 1965.

Notes: 1. Northern Hemisphere winter is December through March; Northern Hemisphere summer is May through
August; Southern Hemisphere winter is June through July; and Southern Hemisphere summer is November through
February. 2. Errors are estimates: the correct method is to include the covariance terms for each month. The
approximation used here is to assume that the ratio of the covariance to the variance of each latitude band (as shown in
Table 4.26) is the same as that for the individual stations.
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A second point is that there is a larger difference between the winter-summer values for the

more northerly stations. Some of the stations shown do not have 22 years of data from 1965

through I986, and the results from those stations should be treated with more care. For instance,
Reykjavik shows a very large winter loss of -2.98 DU per year compared to a mean for the six

stations in that band of-1.62 DU per year. The summer value is also extreme, though this time in

a positive sense, being + 1.49 DU/yr compared to the band average of + 0.02 DUlyr. The overall

pattern of trends found by analyzing the individual station data is reassuringly similar to that

found from the analyses of the band data. (Uncertainty estimates for the average trends from

several stations are not given because the correlations between the data from nearby stations are
not calculated. It is reasonable to suppose that the uncertainties are similar to those calculated for

the latitude band averages discussed in Section 4.6.3, and slightly less than the individual station
uncertainties given for the monthly trends in Appendix 4.A of this chapter. ReinseI et al. make

allowance for the correlation involved when two stations measure ozone in the same parcel of air

producing two sets of data not completely independent of one another.

The ozone changes for the 17 years after 1986 as calculated from the monthly trend co-
efficients are shown in Figure 4.45 for 17 different Dobson stations. Taking initially only the
stations north of 40°N, the winter time loss and its contrast with summer are clearer at some

stations (e.g., Bismarck, Edmonton, Belsk, Caribou, and Hradec Kralove) than at others (e.g.,

Bracknell, Uccle, Hohenpeissenberg, and Sapporo). Much of this apparent difference in be-

havior is the result of the natural variability of total ozone at any particular site, but there may be
some systematic features at work as well. The rationale behind making latitude, and not

longitude, the second dimension of a 2-D photochemical model is that latitudinal differences in

ozone distribution and behavior are generally greater than longitudinal ones. This can be seen
most clearly in the average global distribution of ozone shown in Figure 4.12. Longitudinal

differences at comparable latitudes may be detectable through comparison of individual station
results.

However, examination of the trends of seven stations in both Europe (Lerwick, Belsk,

Bracknell, Hradec Kralove, Hohenpeissenberg, Arosa, and Rome) and North America (Church-

ill, Edmonton, Goose, Caribou, Bismarck, Toronto, and Boulder) reveals no difference in the

seasonal trends over the two continents. These stations were chosen by the length of their
record, and the same number was chosen for each continent. The unweighted numerical

averages of the monthly trend coefficients for these stations are shown in Table 4.17. Also given
in Table 4.17 are the ozone values for Sapporo, which is in a different meteorological region.

There is very little difference between the European and North American blocks, and they can be

contrasted with Sapporo, which does not exhibit a significant loss or gain of ozone at any season

of the year. Losses appear in the Sapporo ozone record for December and March, but no shape is

apparent in Figure 4.45. It is unfortunate that there is only one Dobson station in this region

because of the possibility that any single station may be responding strongly to specific local
effects. The other two Japanese stations, Tateno and Kagoshima, show a similar lack of

significant wintertime change in ozone, but they are at lower latitudes, so that a fair comparison

cannot be made between their observations and those from Western Europe and North America

poleward of 40°N. The two Far Eastern M-83 stations also are not directly comparable because of
their location, instrument, and time of record, but the indicated trends from the Far Eastern

M-83's are generally similar to the Sapporo observations. In contrast, the Siberian and European
M-83 ozone results do show the wintertime loss and winter-summer differences characteristic of

North America and Western Europe.
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Figure 4.45 Ozone changes for various stations between 1970 and 1986. The statistical model used allowed
for effects of the solar cycle and the quasi-biennial oscillation, and data from 1965 (or when the station started
making total ozone measurements if it did so after 1965) to 1986 were used. The ozone change in each month
was assumed to have occurred in a linear fashion after 1969. The monthly ozone changes plotted are not
trends; they are found by multiplying the calculated trend by the 17-year period over which the loss was
assumed to have occurred. The vertical bars represent _+one standard error in the estimate of the change.
(a) Arosa, Switzerland, (b) Aspendale, Australia, (c) Belsk, Poland, (d) Bismarck, USA, (e) Boulder, USA, (f)
Bracknell, UK, (g) Caribou, USA, (h) Edmonton, Canada, (i) Goose Bay, Canada, (j) Hohenpeissenberg,
FRG, (k) Hradec Kralove, Czechoslovakia, (I) Leningrad, USSR, (m) Lerwick, UK, (n) Mauna Loa, USA, (o)
Sapporo, Japan, (p) Tateno, Japan, (q) Toronto, Canada.

Two possibilities exist: either Japan is in a meteorological regime that does not allow the

processes that are causing the winter loss to occur, or there is an instrumental problem that has

not been identified. The latter is unlikely: the Japanese operate their own version of the Dobson,

but satellite overpasses do not indicate any problems in recent years and there are no known
reasons that would cause a seasonal change in total ozone to have been exactly cancelled by a
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Table 4.17 Average Monthly Ozone Changes for Different Continents, 1970-1986 (Data for
1965-1986).

Europe North America Japan (Sapporo)

January - 0.96 - 1.15 + 0.13

February - 1.56 - 1.19 + 0.22
March - 1.51 - 1.14 - 1.40

April - 0.69 - 0.78 - 0.06

May - 0.13 - 0.82 + 0.21
June - 0.28 - 0.23 + 0.05

July -0.19 -0.41 +0.04

August - 0.27 - 0.30 - 0.31

September - 0.55 - 0.18 + 0.40
October - 0.02 - 0.60 + 0.04

November - 0.32 - 0.14 + 0.45

December - 1.10 - 1.09 -0.67

Average - 0.63 - 0.67 - 0.08

The average trends of seven European and seven North American stations are given in the first two columns. In the

third column are the trends for Sapporo, Japan. The trends cover the period 1970-1986 and are given in Dobson Units

per year. They are taken from the model that contains terms for the QBO and the solar cycle with only the data after

January 1965 used. The North American stations are Churchill, Edmonton, Goose, Caribou, Bismarck, Toronto, and

Boulder. The European stations are Lerwick, Belsk, Bracknell, Hradec Kralove, Hohenpeissenberg, Arosa, and Rome.

All are north of 40°N.

seasonal change in the instrument response. A scattered light or _,-dependence problem would

be expected to show up most at the solstices in December and June. The most probable

explanation is that Sapporo is sampling a meteorological regime less influenced by the processes

causing wintertime loss over the major northern continental regions. Figure 4.46 does show that
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Figure 4.46 Phase of total ozone maximum (from Bowman and Krueger, 1985).
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the total ozone maximum at Sapporo is reached at the beginning of March, one of the earliest

ozone maxima in the Northern Hemisphere.

Between 30°N and 40°N, provisionally revised data have been prepared for eight stations. No

strong seasonal variation is found in the trends at any of these stations, so that the yearly trend

has as much meaning as any of the monthly trends. The average of the ramps using the
year-round model is - 0.16 DUfyr, while the average of the means of the monthly coefficients is

-0.23 DU/yr, which indicates that there still is a greater loss in the months with the greater

interannual variation. Propagation of the standard errors of the year-round trends gives an

uncertainty of .06 for the former of these two annual loss estimates. There is a wide geographical

distribution of these eight stations so that the interstation correlation is small and this uncer-

tainty estimate is reasonable, although probably on the low side. Thus, between 30°N and 40°N,

there is a year-round loss without any obvious seasonal character.

South of 30°N, the number of stations for which provisionally revised data sets have been

produced is smaller, and we can have less confidence in the quality of the data as there is less

detailed information available on the day-to-day running of the stations. The main exceptions

are Mauna Loa, whose record is in the process of being totally reprocessed, and Samoa, whose
record only starts in January 1976. The paucity of Dobson data for the three-quarters of the

atmosphere that lies south of 30°N is very unfortunate. The records at Mauna Loa and Samoa

(Appendix 4.B. (i). (b)) both show an ozone decrease in recent years. Neither shows much sign of

any seasonal nature to the change. The 22-year record from 1965 at Mauna Loa exhibits a

year-round trend of - 0.24 + 0.13 DU per year since 1970, which corresponds to a drop of 1.5%

+0.8% between 1970 and 1986. Samoa, with its 11-year record from January 1976--December

1986, shows a year-round trend of -0.85 +_0.25 DU per year over the entire time period. This
corresponds to a decrease of 3.7% _+1.1% over just 11 years. The 1976 annual average is the

highest in the 11 years of Samoan measurements. The station closest to Samoa in latitude is

Huancayo, Peru, which also shows a significant year-round loss of -0.33 _+0.10 DU per year

(- 1.4% +0.43% over 11 years) from 1976 through to 1986, but only -0.18 _+0.06 DU per year

( - 1.2% _+0.43% over 17 years) when the ramp is started in 1970, The Huancayo data taken by

themselves suggest that this ozone loss of about 1.3 percent occurred between 1976 and 1986.

The yearly average of total ozone at Huancayo in 1976 is the highest in its 23 years of observa-
tions, with 4 months posting long-term highs and 3 others being the second highest on record.

Some of the larger decrease seen at Samoa versus Huancayo (or Mauna Loa) could, thus, be the

result of an unusually high year at the start of the Samoa record, and these calculated trends

should be treated with appropriate caution.

Aspendale and MacQuarie Isle are the only two Southern Hemisphere stations outside the

Tropics for which provisionally revised data have been produced. Of these, the Aspendale
station is the more reliable, as MacQuarie Isle has traditionally had problems because of its

unfavorable position both for the observer and for the actual observations, with most taken from

cloudy skies with cloud transfer tables that need improvement (Atkinson and Easson, 1988). A

decrease in total ozone is observed at Aspendale ( - 3.0% +-0.8% year-round from 1970 to 1986)

but no season shows a greater change than any other. No significant change has been recorded at
MacQuarie Isle.

4.6.2.2 Changes Between 1976 and 1986 Using Data From 1965 Onward

Faith in the robustness of the conclusions that have been drawn can be increased by
examination of the observed differences when the start of the trend is set at 1976 rather than 1970.
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Comparison of the results for the individual stations reveals that, in general, a more negative
trend is found if the linear ramp is started in 1976. The error estimates of the trends at the

individual stations also increase by about 50 percent, so that the significance of the coefficients of

the shorter slopes is less. Table 4.18 contains the monthly trend averages for the same European
and North American stations shown in Table 4.17, but using the results given in Appendix

4. B. (i) .(b), and the results can again be taken as representative of more northerly latitudes. The

differences between the two continents are again neither large nor significant, with the winter-

time losses in each case being larger than the summertime loss.

Table 4.18 Average Monthly Ozone Changes for Different Continents, 1976-1986

Europe North America Japan (Sapporo)

January - 0.82 - 1.38 + 0.62

February - 1.62 - 1.51 + 0.55
March - 1.85 - 1.77 - 1.77

April - 1.29 - 1.38 -0.47

May -0.40 - 1.29 + 0.31
June - 0.58 - 0.47 + 0.44

July - 0.70 - 0.67 + 0.42

August - 0.36 - 0.54 - 0.65

September - 0.82 - 0.36 + 0.66
October - 0.38 - 0.93 + 0.33

November - 0.59 - 0.21 + 0.68

December - 1.11 - 1.44 -0.72

Average - 0.88 - 0.99 + 0.03

The average trends of seven European and seven North American stations are given in the first two columns. In the
third column are the trends for Sapporo, Japan. The trends cover the period 1976-1986 and are given in Dobson Units
per year. They are taken from the model that contains terms for the QBO and the solar cycle with only the data after
January 1965used. The North American stations are Churchill, Edmonton, Goose, Caribou, Bismarck, Toronto, and
Boulder. The European stations are Lerwick, Belsk, Bracknell, Hradec Kralove, Hohenpeissenberg, Arosa, and Rome.
All are north of 40°N.

Comparing the trends given in Table 4.18 with those given in Table 4.17 reveals that the

measured rates of loss at all times of year are generally greater when the hockey stick is pivoted at
1976 rather than 1970, although none of the results from particular months at individual stations

shows linear trends from 1976 on that are significantly greater than the 1970 trends. In every
month, the average trends over North America are larger when measured over the shorter time

period, and the same is true over Europe, with the sole exception of January. The largest changes

are seen for April-July. The lack of similarity to Sapporo is still marked. Not only is there no sign

of any seasonal change there, but the trends of 8 of the months become more positive while the
trends at the other 4 become more negative. The fitting of a linear trend to the data is, of course,

simply a convenient, nonphysical treatment of the data. If the changes in ozone concentrations

really were linear for the entire period from 1970 on, then the fitting of a ramp from 1976 on
should result in a lesser apparent change in total ozone because the pretrend mean would have a
lower value from the inclusion of 1970-1975 in the assumed stable mean before 1976. However, a

first approximation check can be made by comparing the separately estimated ozone losses from

1970 and 1976 linear trends. For the European stations, the indicated average losses are 10.7 DU

for the 1970 linear trend (17 x k70), and 9.7 DU for the 1976 trend (11 x k76). The comparable

values for North America are - 10.4 DU and - 10.9 DU, respectively, and for Sapporo - 1.4 DU
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and + 0.3 DU. These differences are all small, indicating that the major contributions to the

calculated losses of ozone over Europe and North America occurred after 1976.

Moving south, less of an effect on the monthly or annual trends is observed. The year-round

average trends for all the individual stations between 30°N and 40°N are all more negative when
the linear ramp is started in 1976. The average of the station ramps using the year-round model is

now - 0.25 DU/yr, while the overall average of the station averages of the monthly coefficients is
-0.30 DU/yr. The propagated standard error is +.08 DU/yr, without any allowance for
interstation correlation.

As already mentioned, it is risky to apportion the same importance to the results of the

remaining stations as would be warranted by the area that they cover. The calculated trend at
Mauna Loa becomes slightly more negative without any sign of a seasonal pattern, and those at

Huancayo and Samoa have been discussed. Aspendale shows more negative trend coefficients

(k76 vs. k70) for every month of the year. Two points are worth making here: (1) the increases in

the absolute magnitude of the trend coefficients are spread very evenly throughout the year and
(2) the most reliable data are those after 1978, and here a sizeable decrease is found (Atkinson and

Easson, 1988). It is hard to see any pattern in the changes observed between the 1970 and 1976

linear trend regressions at MacQuarie Isle.

It is difficult, if not impossible, to say whether the observed more negative linear trends
calculated for 1976-1986 over those calculated for 1970-1986 implies that there is a nonlinear

decrease in total ozone. Superficial examination of the results would indicate this to be true, but

the years 1983 and 1985 both were remarkable for the low level of total ozone, albeit in different

parts of the globe. The plots of TOMS total ozone vs. year for various latitude bands (see Section

4.7) show the different latitudes that were affected in these years. Large negative deviations

occurred at higher latitudes in the Northern Hemisphere in 1983, while 1985 was a relatively

normal year there. (This can also be seen in the provisionally revised tables of data in Appendix

4.A.) At lower latitudes and in the Southern Hemisphere, larger negative deviations were seen
in 1985. If these low levels were the result of a natural fluctuation that is not described by the

statistical model, their position near the end of the record would cause a false impression that

there has been a nonlinear decrease in total ozone. The large natural variability of total ozone

makes it hard to pick up any weak signals.

4.6.2.3 Changes Between 1970 and 1986 Using All Available Data

The provisional revision of the data was carried back to the beginning of the station's record,
or to January 1957 if observations were made before that date. As indicated earlier, the quantity

and perhaps the quality of the data from 1957-1964 were not as high as later, when more stations

were in operation and more regular intercomparisons were conducted. Further, the nuclear

bomb testing in the atmosphere complicates the interpretation of pre-1965 data. For these

reasons, less emphasis is placed in our conclusions upon the results of the statistical data

analyses in this section.

Statistical Analyses Without Consideration of the Atmospheric Bomb Tests

These statistical analyses have an inherent lack of geophysical reality because they ignore an

important known phenomenon affecting stratospheric ozone--namely, the testing of nuclear

weapons in the atmosphere. This unreality is augmented by both the atmospheric modeling of

the nuclear tests and the significant contributions from such testing indicated by statistical
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calculations allowing for such effects. The results in this section are of interest primarily in

numerical comparisons with the more complete geophysical description in the next section, and
not for significant statements about the atmosphere itself.

Of the seven European stations that have been considered above as a group, only Lerwick,
Arosa, and Rome have records that start in January 1957, while, for the North American stations,

the station whose record starts earliest is Edmonton (July 1957). The time periods for which

revised station data are available are given in Table 4.10. The wide variety of starting dates makes
unwise the comparison of the two groups of stations as before, and it is better to examine them

on an individual basis only. The record for Sapporo starts in January 1958, providing I year less

than the 30-year record of the three European stations. The average of the monthly trends

observed at Lerwick, Arosa, and Rome are shown in Table 4.19, together with those calculated at

Edmonton and Sapporo. The results from Appendix 4. B. (i). (c) are used. There are clear signs of a

wintertime loss in Europe and at Edmonton, although at Edmonton only the March trend is
significant at the 2o- level of confidence. (The trend uncertainty estimates for the stations are

given in the Appendix to this chapter.) The magnitude of the trends is more positive than those

in Table 4.17 for every month except May. The year-round average is calculated as -0.22 DU/yr

when the European data from 1957 is used as opposed to -0.66 DU/yr when the shorter time

period is used. The reduction in the size of the decrease is not the consequence of using three
European stations rather than seven. The average monthly trends for Lerwick, Arosa, and Rome

using their data from 1965 to 1986 are shown in parentheses in the first column of Table 4.19, and

the magnitudes of these trend coefficients are very similar to those shown in Table 4.17 for the

group of seven European stations. Comparison of the annual averages of the two time periods

for the 12 stations north of 40°N shows that 8 stations have more negative trends when the

shorter time period is considered, 2 have more positive values, and 2 show little change. Little

Table 4.19 Average Monthly Ozone Changes, 1970-1986 (Data for 1957-1986).

Arosa/Lerwick/Rome Edmonton Sapporo
1957-1986 (1965-1986)

January - 0.63 ( - 0.98) - 1.45 - 0.22

February - 0.67 ( - 1.01) - 0.81 + 0.18
March - 0.82 (- 1.21) - 1.47 - 1.14

April - 0.31 ( - 0.64) - 0.62 + 0.40

May - 0.23 ( - 0.56) - 0.56 + 0.36
June +0.07 (-0.26) +0.30 +0.24

July - 0.06 ( - 0.34) + 0.52 + 0.19

August + 0.08 ( - 0.26) + 0.23 - 0.10

September 0.00 ( - 0.46) + 0.34 + 0.34
October + 0.49 (+ 0.30) - 0.31 + 0.56

November + 0.14 ( - 0.02) + 0.72 + 0.62

December - 0.76 ( - 1.14) - 0.19 - 0.22

Average - 0.22 ( - 0.55) - 0.28 + 0.10

The average trends of three European stations (Lerwick, Arosa, and Rome) are given in the first column. In the second
and third columns are the trends for Edmonton, Canada, and Sapporo, Japan. The trends cover the period 1970-1986
and are given in Dobson Units per year. They are taken from the model that contains terms for the QBO and the solar
cycle with all the available data used. The figures in parentheses in the first column are the average trend coefficients
for the same three European stations using only the data from 1965. All these stations are north of 40°N.
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noticeable change is found in the magnitude of the trends for the stations between 30°N and

40°N: using the shorter period, one annual average is lower, two show little change, and two

show a slight increase. Similar comments apply to the more southerly stations.

Considering the Atmospheric Nuclear Bomb Test Effects

The observation that less negative trends in total ozone are observed only north of 40°N when

measurements prior to 1965 are included in the calculations implies that lower ozone values were

recorded at these more northerly stations only in the pre-1965 years. It is noteworthy in this

respect that the major atmospheric bomb tests were conducted at high latitudes in the Northern
Hemisphere and that the largest effects on total ozone from the subsequent injection of large

quantities of nitrogen oxides into the stratosphere are calculated to be at these higher latitudes
(see Figure 4.44).

Reinsel (1981) investigated the effect on ozone that the program of atmospheric testing of

nuclear weapons might have had and concluded that the results of his analysis were "consistent

with a maximum decrease in ozone of approximately 2 to 4.5% due to nuclear testing effects in

the early 1960s." The function used was similar to that produced by the 1-D photochemical

model of Chang et al. (1979) and consisted of a linear decrease from 1961 to 1963 followed by an
exponential return with a halflife of about 2 years. Since it was based on a 1-D model, there was

no allowance for a possible seasonal variation in response, an effect seen strongly in the current

2-D LLNL calculations. Aside from the seasonality, the two functions are very similar.

Only stations with records starting prior to January 1965 are statistically tested for a possible

nuclear effect in the current calculations. Many of these station records start in the years after

1962, and the calculated nuclear coefficient for these stations should be treated carefully. Table
4.20 contains the nuclear coefficients and the standard error estimates for all these stations

together with the latitudes and starting date for each station. The stations are split into two
categories: those whose records start prior to 1960 and those whose records start between 1960

and 1965. In order to calculate the effect of the bomb tests on total ozone, one multiplies the

coefficient shown in Table 4.20 by the value in Figure 4.44 corresponding to the time period of
interest and the station's latitude.

For the purpose of this discussion, the maximum effects will be considered and Lerwick will
be treated as lying in the 53°-64°N latitude band. The maximum predicted effect at Lerwick from

the 2-D calculations is about 30 DU at the beginning of 1963, and, as Lerwick's bomb test

coefficient is -0.71, the observed decrease is about 21 DU, or 6 percent. Approximately the same
loss is seen at Edmonton, while at Arosa the maximum effect is found to be about - 12 DU (20 x

-0.6), about a 4 percent drop. Similar calculations for the other stations show smaller, but
similar, losses over Europe and North America in good agreement with Reinsel's analysis. The

significance of the bomb test coefficients varies: those for Lerwick, Edmonton, and Arosa are all

significantly different from zero at the 2 sigma level and that for Rome is 1.7 standard errors from

zero. These four stations are the most likely to pick up a strong ozone signal from atmospheric

testing, as their records start well before the major effect is calculated to have occurred and they

are at latitudes where there should have been a large depletion.

There is some indication of a different response over Japan: Sapporo has a smaller coefficient

than Arosa or Rome--the two most latitudinally similar of the stations with the long records---
and Tateno has a coefficient of + 0.65 + 0.46, which indicates that there was an increase of about

8 DU in early 1963. Cagliari, which is 3 degrees north of Tateno, has a coefficient of - 0.38 + 0.63.
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Table 4.20 Statistical Evaluations of Ozone Depletion From Atmospheric Nuclear Testing Using
Data From Individual Stations

Station Bomb Test Coefficient Observations Latitude

Began (°N)

Lerwick -0.71 _+_.27 (- 0.70) 1/57 60

Edmonton - 0.62 + .27 (- 0.60) 7/57 54

Arosa - 0.60 -+ .25 (- 0.47) 1/57 47

Sapporo - 0.18 + .31 (- 0.22) 1/58 43

Rome - 0.55 --- .33 ( - 0.58) 1/57 42

Cagliari - 0.38 --- .63 ( - 0.33) 1/57 39
Tateno + 0.65 + .46 (+ 0.58) 7/57 36

Goose - 0.04 + .21 (- 0.01) 1/62 53

Belsk - 0.37 + .43 (- 0.28) 1/63 52

Caribou + 0.09 + .32 (+ 0.29) 6/62 47

Bismarck - 0.80 + .38 (- 0.54) 1/63 47
Toronto + 0.38 + .29 (+ 0.42) 1/60 44

Boulder - 1.14 + .67 (- 0.27) 1/64 40

Nashville - 0.54 + .49 (- 0.10) 1/63 36

Srinigar - 0.72 + .75 (- 0.53) 2/64 34

Kagoshima + 0.46 + .56 (+ 0.17) 4/61 32

Mauna Loa - 2.73 _+1.21 ( - 2.28) 1/63 20

The upper table contains the bomb test coefficients for stations whose records started before 1960, and the lower table
contains the same information for stations whose records started between 1960and 1965. The bomb test coefficients
have no units and should be used as multipliers for the appropriate latitudinal function shown in Figure 4.13. The
statistical model contained terms for the QBO and the solar cycle and assumed that there was a linear decrease in total
ozone starting in 1970. The numbers in parentheses are the nuclear coefficients for the same model except that the
linear decrease is started in 1976.

In all cases, however, the error bars are sufficiently large that the differences are only suggestive.

Two interesting points are worth noting. First, the error estimates get larger as latitude de-

creases. Presumably, this inflation occurs because the signal being sought is smaller at lower
latitudes. Second, when the bomb test coefficients for the model where the ramps are started in

1970 are compared with those for the model that starts the ramps in 1976, no change can be seen

in the upper half of the table. However, in the case of the 10 stations whose data sets start after

1960, all of the bomb test coefficients are more positive for ramps beginning in 1976. Why this is

so is not clear. Two main conclusions can be made from this discussion, each of which is in good
agreement with those of Reinsel (1981):

• There was a decrease of several percent in total ozone in the early 1960% which is consistent

with the hypothesis of an effect from the atmospheric testing of nuclear weapons. Further,

the more northerly stations with the longer records show the decrease more clearly, as
would be expected if this hypothesis were true.

• The observed decrease is smaller than that calculated by the LLNL 2-D model. However,

neither the significance of the disparity nor its possible causes is clear.

The effect of the inclusion of the bomb testing term on the trend coefficients is closely related

to the size of the total ozone depletion from the bomb tests. The consequence of finding and
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allowing for a depletion of ozone prior to the start of the linear ramp is that the unperturbed
ozone levels are calculated to be higher than they would be if the depletion were not allowed for.

If the unperturbed ozone levels are higher, then the trend coefficients that are calculated will be

more negative. The average monthly trends for the three European stations (Lerwick, Arosa,

and Rome) are shown in the first column of Table 4.21, and those for the Edmonton and Sapporo

stations are given in the second and third columns. The equivalent trends calculated using the

model that did not allow for the bomb test effect are shown in Table 4.19; comparison reveals that

every single trend is more negative in the case where the bomb test term is included. This effect

on recent trends is expected, as ozone depletions are calculated to have been caused by the

atmospheric bomb tests for all of these stations.

Table 4.21 Monthly Trends in Ozone When Allowance Is Made for Depletion by Nuclear Testing.

Arosa/Lerwick/Rome Edmonton Japan (Sapporo)

January - 0.81 - 1.64 - 0.26

February - 0.84 - 1.00 + 0.13
March -0.98 - 1.65 - 1.19

April - 0.46 - 0.79 + 0.36

May - 0.36 - 0.7I + 0.32
June - 1.04 + 0.17 +0.21

July - 0.16 + 0.41 + 0.16

August - 0.04 + 0.09 - 0.13

September - 0.13 + 0.18 + 0.30
October + 0.33 - 0.50 + 0.52

November - 0.04 + 0.50 + 0.58
December - 0.95 - 0.39 - 0.27

Average - 0.37 - 0.44 - 0.06

The average trends of three European stations (Lerwick, Arosa, and Rome) are given in the first column. In the second
and third columns are the trends for Edmonton, Canada, and Sapporo, Japan. The trends cover the period 1970-1986
and are given in Dobson Units per year. They are taken from the model that contains terms for the atmospheric bomb
testing effect as well as the QBO and the solar cycle with all the available data used. All these stations are north of 40°N.

Comparison with the results in Table 4.17 reveals that the negative trends calculated using
only the data after 1965 are greater than is the case when all of the data are used and the bomb test

term is included. Again, the significance of this difference is not clear, but examination of the raw

data reveals that the measurements made in the years around 1960 were also low historically.

This last fact is pertinent in the discussion of the effect of the solar cycle on total ozone. On the

other hand, if the contributions to ozone loss were assumed to be correctly calculated by the

atmospheric models (i. e., greater losses than indicated by the statistical calculations), then better

agreement would be found between the negative trends for data starting in 1957 and 1965.

4.6.2.4 Effect of the Circulational Quasi-Biennial Oscillation

A quasi-biennial oscillation (QBO) in temperature, zonal winds, and column ozone at the

Equator has been widely noted (Reed, 1960; Veryard and Ebdon, i961; Wallace, 1973; Angell and

Korshover, 1978; Coy, I979; Tolson, 1981; Hasebe, 1983; Naujokat, 1986). A QBO in total ozone
also exists at other latitudes, and Coy, for example, pointed out that the relationship between the

QBO in the equatorial winds and total ozone at different latitudes varies according to latitude

(see Figure 4.47). A similar variation has been found in our analysis both in terms of the phase

277



TOTAL COLUMN OZONE

N

LU

F-
t--
<
.J

S

YEAR

71 73 75 77
5 1 I I i t _ I J

/

_+5

_+5-

-5 I I 1 1 I i i

vv4-Eq vv-FE4--w--I--Eq--W----
85 l _/_ t i

2 -2

25

55

85
71 73 75 77

YEAR

NH

SH

GL

1.4

- 1.3

- 1.2

- 1.0

- 0.9

- 0.8

0.8

0.5

0.6
0.6

0.6

0.5

0.6

0.7

0.8

- 1.3

- 1.6

1.9

ZM

Figure 4.47 Quasi-biennial oscillation of total ozone (Dobson Units--DU) in the mean values of Northern
Hemisphere (NH), Southern Hemisphere (SH), globe (GL), and zonal mean values (ZM). Vertical bars and
the numerals on the right-end column of ZM indicate the estimates of errors as the confidence limits of about
70 percent. The isopleths in ZM are drawn with the interval of 2 DU, and the shaded areas correspond to those
of negative deviations. Letters E and W situated between GL and ZM indicate the easterly and westerly
phase, respectively, of the quasi-biennial zonal wind oscillation in the equatorial stratosphere at 50 mbar
(taken from Coy, 1979).

and the magnitude. For simplicity, only two phases were tried in this analysis: no lag at all and a

6-month lag. There are four main points:

• Above 40°N, total ozone is found to be low when the Singapore 50-mbar winds are in the
westerly phase.

• A minimum in the magnitude of the calculated QBO coefficients is found in the vicinity of
40°N latitude.
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• Between 10°N and 40°N, a better correlation is found if the Singapore 50-mbar wind speeds

lag the total ozone measurements by 6 months in the statistical model.

• The relatively high frequency of the QBO (there are about 10 cycles in the period 1965-1986)

makes its inclusion or exclusion have a negligible effect on the trend estimates.

The first three points are in good agreement with previous analyses as well as with the results

of a recent 2-D model (Gray and Pyle, 1988).

The statistical model postulates a simple linear relation between the 50-mbar wind speed at

Singapore and total ozone, and such a correlation is observed. Figure 4.48 shows a plot of the

magnitude of the QBO coefficients against latitude. All of the stations north of 40°N were tested
with the concurrent wind speeds, while those south of 40°N were tested with the wind speed

lagged by 6 months. The chances that the relationship is actually so simple are small. Labitzke

and van Loon (1988) have proposed that the effect of the QBO and the solar cycle are inter-

dependent. Larger ozone anomalies might then be observed when the solar cycle activity is high

at the same time as the tropical 50-mbar winds are westerly. Schuster et al. (1988) examined the

high-resolution TOMS data and concluded that, although there is a relationship between

equatorial and extratropical QBO signal in the stratosphere, the interannuaI variability that can

be seen in longitudinal time series at high latitudes implies that the equatorial QBO is not a good

indicator of the high-latitude interannual variability. Further, they report that the QBO may be

modified by a 4-year oscillation or by the eruption of E1 Chich6n in April 1982. Thus, there are

good reasons to suppose that the treatment of the QBO in this analysis is too simple. However

the high significance of the calculated coefficients (especially at high and low latitudes) indicates
that the simple model used does manage to extract much of the QBO's effect on total ozone.
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Figure 4.48 The calculated coefficients for the quasi-biennial term are plotted for 31 stations. At all latitudes
except those between 30-39°N, the Singapore wind speed was kept concurrent with the total ozone (so that
they are anticorrelated in northern latitudes). Between 30-39°N, a 6-month phase lag was imposed on the
Singapore wind speed.
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In view of the possible factors that are capable of perturbing the atmosphere's response to the
QBO, it is worth reconsidering the possible nonlinearity of a decrease in ozone discussed earlier

in this section. If there had been no exceptional natural events in the last few years, it would be
reasonable to say that there is weak evidence to support the view that there has been a nonlinear

decrease, with the rate of loss increasing in more recent years. However, both 1983 and 1985

were years in which low levels of ozone were observed, and they were also both years in which
the QBO would be expected to cause negative deviations in total ozone. Two additional events

occurred that might have affected total ozone in 1983: the E1 Chich6n volcano erupted in April
1982, injecting large amounts of particulate matter, especially sulfate, into the stratosphere, and

in 1983 there was an El Niho. Either the El Chich6n eruption or the El Nitro might modulate the
QBO effect on total ozone as well as having an effect of their own, and because such a modulation

is not included in the statistical model, the effects are not accounted for mathematically. In this

context, it is worth recalling that in 1983, the 100-mbar temperatures diverged from their

historical relationship with total ozone at Bismarck and Churchill, although not at Belsk.

The mechanism through which the QBO of the stratospheric winds at the Equator affects

total ozone at other latitudes must be properly understood before it is realistically possible to

judge how other events might modulate this effect. Further statistical analyses should be
performed to elucidate the character of the relationship as much as possible.

4.6.2.5 Effect of the 11-Year Solar Cycle

The relationship of total ozone with the amount of solar radiation passing through the

atmosphere is very complex. The amount of ozone at any place in the atmosphere is dependent
on both photochemical and meteorological processes. Variations in the levels of solar radiation

reaching the atmosphere will affect the rates of photochemical reactions and the amount of solar

energy absorbed. Changes in the heating rates and the temperature distribution in the atmos-

phere will occur, leading to changes in the circulation patterns as well as affecting the rates of

those chemical reactions that are temperature dependent. Further, it is possible that the

responses of ozone concentrations to the natural variations in solar radiation are dependent on

latitude, altitude, and season. Many studies have looked at the statistical relationship between

the solar cycle and total ozone, some of which looked a t the short time-scale of 27 days (e. g., Gille

et al., 1984c; Hood, 1984; Chandra, 1985; and Keating et al., 1985). Others investigated the link
with the I1- and 22-year cycles (e.g., Keating, 1981; Natarajan et al., 1980-1981; Brasseur and

Simon, 1981; and Garcia et al., 1984). In a trend analysis where the changes might have occurred

over a decade or so, it is important to allow for any total ozone variations that might have

occurred on a similar time scale, i.e., the 11- and 22-year cycles. Because of the complexity of the

relationship between the solar irradiance and total ozone, tile proxy used in most trend analyses

is a measured quantity that, it is hoped, is related to the total solar flux. A calculated response
such as that for the atmospheric bomb tests has not been used. The 10.7 cm solar flux series was

used by Reinsel et al. (1987) and Oehlert (1986). Reinsel et al. found that there was a positive
change in global total ozone from solar minimum to maximum of about I percent, while Oehlert
calculated the change to be + 1.3 percent. These are compatible with the model estimates of

Garcia et al. (1984). Similar trend studies using the SBUV data from Nimbus-7 are hampered by
the fact that the total ozone measurements were started in 1979, near the maximum of the last

solar cycle.

The current trend analyses use the smoothed sunspot series shown in Figure 4.42. Bishop

(private communication) noted that the response of total ozone to the solar cycle is more
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significant when the solar cycle indicator is smoothed and that it is more reasonable on physical

grounds to use a smoothed series. (In this case the smoothing is performed by taking the mean of
each pair of consecutive 12-month running means of the monthly values.) The calculated solar

cycle coefficients for each station are given in Table 4.22 for the model whose results are shown in

Appendix 4.B. (i). (a). It is hard to pick out any features within these values, except that there are

occasional inconsistent results from geographically proximate stations. Any proportional re-

lationship between the solar activity and total ozone appears to be marginally statistically

significant. As mentioned, no attempt has been made to determine whether solar activity

modulates the QBO or any other meteorological phenomena in this study.

Table 4.22 Statistical Evaluation of Ozone Variations in Response to the Solar Sunspot Cycle.

Station Sunspot Coefficient

Reykjavik* + 14.6 _+4.4
Lerwick + 6.2 _+3.2

Leningrad + 1.4 -+3.9
Churchill + 6.0 _+3.2

Edmonton + 3.8 -+3.2
Goose + 7.6 -+3.0

Belsk + 4.4 -+3.3

Bracknell + 1.5 _+2.8

Uccle* + 4.2 +-3.5

Hradec Kralove + 2.6 -+3.8

Hohenpeissenberg - 0.3 -+ 2.7
Caribou + 7.6 -+3.2

Bismarck + 6.2 _+3.0

Arosa + 2.7 _+2.2

Toronto - 0.4 _+3.0

Sapporo + 7.0 ---3.2
Rome + 4.2 _+2.8

Boulder + 0.4 _+2.4

Cagliari + 7.6 +3.6
Wallops Isle* + 0.3 _+2.4
Nashville + 5.4 _+2.7

Tateno + 3.0 +2.7

Srinigar + 5.0 -+2.1

Kagoshima - 0.3 -+3.6
Quetta + 3.0 _+2.8
Cairo + 2.0 +1.6

Mauna Loa + 1.5 +2.4

Huancayo + 1.2 _+1.2

Aspendale + 2.2 _+2.7
MacQuarie Isle + 9.9 _+4.6

The solar cycle coefficients for the individual stations from Appendix 4.B.(i). (a). The units are in Dobson Units per 150
sunspots. The (*)indicates stations whose record starts after January 1970 so that they cover 1.5 solar cycles or less.
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4.6.3 Results of the Analysis of Latitudinal Averages of Dobson Data

The provisionally revised data were analyzed with the same sets of statistical parameters after

the records from all the stations were combined to form latitudinal band averages. The use of
these composite time series enables the inclusion of measurements from stations for which

provisionally revised data have been prepared but that are not suitable for time series analysis on
their own for reasons associated with length and completeness of records. For instance,

measurements were taken at Uppsala, Sweden, from 1950 to 1966: obviously, they can not be
tested for a decrease in recent years, but their inclusion increases the number of stations used in

forming the early part of the latitudinal band averages.

The deviations of the yearly averages from their long-term means are plotted in Figure 4.49
for four latitude bands: 60-80°N, 53-64°N, 40-52°N, and 30-39°N. The deviations are shown as

percentages of the respective belt average for 1957-1986, with the belt averages marked on the

right-hand axis. The vertical bars above and below the curves show the approximate single
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Figure 4.49 Variation of annual total ozone percentage deviations for the three latitude bands 53-64°N,
40-52°N, and 30-39°N. The curves are smoothed by a (1:2:1)/4 smoother. The vertical bars represent __ 1
standard deviation where the standard deviation is calculated from the combination of the individual stations'

intramonthly standard deviations with no allowance made for any effects such as regional correlation
between stations. The most northerly band has the highest ozone values.
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standard deviation uncertainty associated with each point. (The possible uncertainty is found by

combining the standard deviations for all the monthly values from the stations that are used to

calculate that particular point in the latitudinal band average. No allowance for spatial cor-

relation or autocorrelation is made.) Figure 4.50 shows the deviations and associated uncer-

tainties for the winter values, and Figure 4.51 is the equivalent plot of the summer values for the

same belts. The relative quality of the stations' data used to establish the combined files is

considered to be moderate, better, best, and better, respectively. It should be noted that the
stations located between 60°N and 65°N are included in two latitude belts. This was done to

compensate for the scarcity of data at these latitudes and to try to reflect the extremely intensive

meridional exchange existing there. However, the stations north of 65°N have varying periods of

total polar darkness, and hence lack of data, throwing a heavy weighting onto the 60--65°N
stations in the winter months. This 60--80°N latitudinal band average was formed to investigate

the behavior of total ozone in the far north. The results should not be compared with the results

of the more southerly bands, because there is less data and because some data are also used in the

53-64°N band average.
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Figure 4.50 Variation of winter total ozone percentage deviations for the three latitude bands 53-64°N,
40-52°N, and 30-39°N. The curves are smoothed by a (1:2:1)/4 smoother. The vertical bars represent __+1
standard deviation where the standard deviation is calculated from the combination of the individualstations'

intramonthly standard deviations with no allowance made for any effects such as regional correlation
between stations.
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4.6.3.1 Results

The coefficients for the latitudinal band averages found from the six types of analyses
described for the individual stations are given in Appendix 4.B.(ii). Table 4.23 contains the

results of the model that uses the data from January 1965-1986, starts the ramps in 1970, and

includes terms for the QBO and the solar cycle. The monthly losses corresponding to these trend

coefficients over the period 1970-1986 are shown in Figure 4.52 for the three main bands. Table
4.24 contains the results of the model that used all the data and that included terms for the QBO,

the solar cycle, and the atmospheric bomb tests. The main conclusions are in good agreement
with the results of the station analyses:

• There is a high-latitude wintertime loss occurring in the Northern Hemisphere.
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Table 4.23 Monthly Coefficients (in DU/Yr) for the Three Latitude Bands for 1965-1986 Data,*

Model 53-64°N 40-52°N 30--39°N

Time Period 1/65-12/86 1/65-12/86 1/65-12/86

January -1.84 +0.50 -0.56 _+0.45 -0.42 +0.30

February -1.79 +0.71 -1.18 _+0.51 -0.25 +0.37
March -1.07 +0.36 -1.33 ---0.55 -0.72 +0.38

April -0.52 _+0.34 -0.58 -+0.41 -0.35 _+0.27

May -0.52 _+0.27 -0.30 -+0.24 -0.35 _+0.18
June +0.22 _+0.20 -0.39 +0.21 -0.64 _+0.19

July 0.00 _+0.22 -0.43 +0.20 -0.23 _+0.18

August +0.03 _+0.24 -0.46 _+0.18 -0.18 +0.18

September +0.03 -+0.21 -0.53 +0.19 -0.17 ___0.15
October -0.19 +0.21 -0.27 ___0.26 -0.15 +0.14
November +0.27 ___0.32 -0.44 -+0.25 -0.02 +0.13

December -1.17 +__0.46 -1.08 -+0.33 -0.38 -+0.20

Average - 0.55 - 0.63 - 0.32

QBO (DU/40ms -I) -6.40 +_2.36 -4.40 _+2.28 +6.00 _+2.00

Solar + 5.88 -+2.63 + 2.64 _+2.48 + 0.33 + 2.00

(DU/150 sunspots)

Yearly -0.14 ___0.13 -0.47 +_0.13 -0.16 -+0.11
Coefficient

*The data from 1965-1986 were analyzed, and trends from 1970, the QBO, and the solar cycle were allowed for in the
model (QS70).

• The QBO coefficient is significant at all latitudes and is anticorrelated above 40°N and 6

months out of phase between 30 ° and 39°N.

• The solar cycle relationship is less clear: according to the band analyses, the effect on total
ozone is minimal in the 30-39°N band. However, this is not clear from the results of the

station analyses (see Table 4.23).

• The atmospheric nuclear bomb tests had a greater effect at higher latitudes.

The LLNL predictions of the nuclear bomb test effects on ozone appear to agree better at

higher latitudes. However, the uncertainties associated with the bomb test parameters are

sufficiently high that firm conclusions are difficult. During the early 1960's, ozone deficiency is

most pronounced in the winter season plots. While it is possible to attribute these deficiencies to
the nuclear bomb tests carried out in the atmosphere, one should not ignore that the QBO was in

its westerly phase during 1961 and 1963--1964, and that there was an ENSO in 1964. Both these

geophysical events are circulational conditions that could cause (or be coincident with) ozone

deficiencies in the northern latitudes. The strongest known ENSO in this century occurred in

1982-1983, overlapping with the westerly phase of the 1983 QBO, and might have contributed

substantially to the negative ozone deviations in the mid-1980's (Bojkov, 1987b).
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Figure 4.52 Ozone changes for the three latitude bands 53-64°N, 40-52°N, and 30-39°N between 1970 and
1986. The statistical model used allowed for effects of the solar cycle and the quasi-biennial oscillation, and
data from 1965-1986 were used. The ozone change in each month was assumed to have occurred in a linear
fashion after 1969. The monthly ozone changes plotted are not trends; they are found by multiplying the
calculated trend by the 17-year period over which the loss was assumed to have occurred. The vertical bars
represent _+ 1 standard error in the estimate of the change. (a) 54-64°N, (b) 40-52°N, and (c) 30-39°N.
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Table 4.24 Monthly Coefficients (in DU/Yr) for the Same Bands as in Table 4.23 for 1957-1986
Data.*

Model 53-64°N 40-52°N 30-39°N

Time Period 1/57-12/86 1/57-12/86 1/57-12/86

January - 1.10 -+ .47 - 0.81 + .43 - 0.31 + .29

February - 1.70 + .66 - 1.15 + .49 - 0.11 + .36
March - 0.83 --- .34 - 1.35 -+ .53 - 0.43 + .37

April - 0.35 + .33 - 0.48 _+ .39 - 0.38 ± .27

May - 0.51 -+ .26 - 0.28 _+ .24 - 0.28 + .18
June - 0.04 + .19 - 0.17 + .21 - 0.44 + .19

July - 0.06 + .21 - 0.20 + .20 + 0.08 + .18
August - 0.22 --- .23 - 0.12 + .18 + 0.23 + .18

September + 0.09 + .20 - 0.21 + .19 + 0.13 +_ .15
October + 0.10 -+ .21 - 0.05 + .26 + 0.14 +-_.14

November + 0.61 + .32 - 0.44 +_ .25 + 0.12 + .14

December - 0.38 -+ .44 - 1.14 _+ .33 - 0.26 + .20

Average - 0.37 - 0.53 - 0.13

QBO (DU/ms -1) - 6.80 + 2.16 - 5.60 -+ 2.28 + 5.20 + 1.88

Solar

DU/150 sunspots) - 2.52 +_ 2.33+ 1.23 + 2.02

Nuclear - 0.48 _ .19 - 0.50 --- .30

- 0.09 + .14 - 0.24 + .15Yearly coefficient

+ 0.96 +-- 1.83

- 0.09 + .32

+ 0.05 + .12

*The data from 1957-1986 were analyzed, and trends from 1970, the QBO the solar cycle, and the atmospheric bomb
tests were allowed for in the model (QNS70).

4.6.3.2 Combination of Incomplete Station Data Into Band Averages

Although all of the groundstations in the north Temperate Zone exhibit very similar seasonal

variations in total ozone, with maxima in March or April and minima in September, October, or
November, difficulties can arise when these data sets are combined to form latitudinal band

averages. A band average is supposed to be a set of data that are representative of the ozone
levels within that band, and that can thus be directly compared to the results from 2-D model

calculations for various latitudes. The 2-D model necessarily ignores any longitudinal variations

in ozone concentrations. The process of combining the data from different stations is seemingly

simple, and yet is actually the opposite.

From a statistical point of view, the ideal case would be one in which each station within a
band is taking readings of total ozone drawn from the same parent population--i.e., the

statistical behavior of the total ozone (seasonal means, standard deviations, etc.) is the same

above each station; the measurements at one station are not correlated with those from any other

station; and each station has been operating for the same length of time. In practice, none of

these conditions is met. No two stations in a band measure from the same parent population

because the meteorology at each station is different in at least some respects from that at any of
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the others. The observed differences include different mean ozone levels, different timings for

the ozone maxima, and different magnitudes of the yearly cycle (Bowman and Krueger, 1985).
The first of these factors has been overcome in these calculations by normalizing the series from

each station through division by its long-term mean, while the last of these factors was not

accounted for in the analyses presented here.

The difference in the timing of the maxima does pose some problems when the data are

analyzed for seasonal changes. There are two cases where special caution is needed. First, a large
number of Soviet stations were improved by the introduction of the M-83 filter ozonometer in

1972; the measurements from these stations were not included in the latitudinal band averages
because the ozone maximum over most of the USSR occurs later than over most Western stations

(Figure 4.46). Second, for the cases where all the data from 1957 are analyzed in the two most

northerly bands (53-64°N and 60-80°N), only a few stations were making measurements in the

very early years. This problem has nothing to do with the quality of the data, and is caused only

by the combination of incomplete sets of data that have different statistical characteristics. It is

also well known that the readings from one station are correlated with those of nearby stations.

Indeed, this fact was one of the criteria used in looking for possible errors in the ozone record
from an individual station that might signify an unrecorded calibration of the basic instrument.

Finally, Tables 4.3, 4.4, and 4.7 indicate that the station records are not fully coincident, but
instead show wide variations in the period of time covered.

The problems involved in the combination of records of different length when the ozone

maxima are displaced in time can be illustrated with the data from the Dobson stations at Belsk

and Bismarck. These two stations experience approximately 1 month's difference in the timing of

their ozone maxima and minima (see Figure 4.53) and so provide a good example. The available

records for both stations cover the entire 24-year period from January 1963-December 1986, and
show similar decreases in total ozone during the winter when the second 12-year period is

compared with the first 12-year period (see Figure 4.35), or in an 11-year vs. ll-year period
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Figure 4.53 Annual total ozone cycles at Belsk and Bismark. The points represent the 10-day averages at
each station calculated from 24 years of measure.
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comparison for the final 22 years. The combination of these 24-year data sets has been carried out

by first normalizing each by division of the long-term mean, and then averaging the normalized

monthly concentrations to obtain a two-station value. The purpose of this combination is solely
to illustrate the inherent problems in this process.

A hypothetical test of the combination of records of differing lengths can be obtained from
these real data by assuming that the data from Bismarck are available only from January 1975 on,

and not during the first 12-year period. Combination of the Belsk and Bismarck data for

1975--1986 can provide average values for this period. In this hypothetical instance, with only the

Belsk data available for the first period, the 1963-1974 "average" will be just the Belsk data. An

alternative illustration can be gained by using "Bismarck only" for the earlier period. Com-

parison of these average values presents a very different picture of the months in which ozone

losses have appeared in the second period relative to the first (Figure 4.54). The full average is

shown by the solid circles, with an average wintertime loss similar to that found for the

individual stations. Both incomplete combinations displace the timing of ozone losses in Figure
4.54.

The addition of data from a large group of stations with different mean timing of their ozone

maxima to a longer set of data could result in distortion of the seasonal observations. For this
reason alone, the total ozone data collected with the M-83 instrument have not been blended

into the overall band data, because their useful record begins only in 1972 and not in the early

1960's. Similarly, the monthly results for the 53--64°N and 60-80°N bands when all the data from

1957 are included should be treated carefully, as only a few stations were making measurements

in the early years, with many joining in later on. These are the conditions that can tend to blur

possible seasonal differences in ozone loss. However, in the basic analysis where the data from
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Figure 4.54 The points using the symbol • are the differences in the monthly averages for the periods
January 1963-December 1974 and January 1975-December 1986 for a combined series of the data from
Belsk and Bismarck. The equivalent results when only Belsk was taken as operating in the former period are
shown with the symbol/7, while those for the case where just Bismarck was taken for the first period have the
symbol A. In all cases, both stations' data were used in the second period.
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1965-1986 are considered, there is no significant disagreement between the seasonal trends

calculated from the latitudinal band averages and the average seasonal trends of those stations

within the latitude bands that have records that are long enough for time series analysis. The

winter losses over the 17-year period from 1970-1986 for the three bands are (1) 53-64°N, -6.2

+ 1.5%, and -7.2%, where the first value is for the analysis of the latitudinal band average (from

Table 4.23) and the second value is the average of the individual station losses in Table 4.16

converted to a percentage; (2) 40-52°N, -4.7 _+1.5%, and -5.0%; and (3) 30-39°N, -2.3 + 1.3%, and

-1.5%. Similarly, the summer (MJJA) losses are (1) 53-64°N, -0.2 ---0.8%, and +0.1%; (2)
40-52°N, -1.9 + 0.7%, and -1.9%; and (3) 30-39°N, -1.9 ___0.8%, and -1.9%. None of these pairs of

estimates for the average loss in the different latitude bands shows any inconsistency in the

results using the two methods for calculating the changes. Despite the potential problems in

assembling latitudinal band averages, they do provide extra insight into the changes in total

ozone because they include data from stations with short or incomplete records.

4.6.3.3 Year-Round Versus Monthly Loss Models

A comparison of the results from the year-round and monthly models illustrates how
important the underlying assumptions for the two models are. Table 4.25 contains the yearly

trend estimates calculated in three different ways for three latitude bands: (1) the coefficient from

the year-round model, (2) the weighted mean of the monthly coefficients (using the square of the

inverse of the standard error as the weighting factors), and (3) the unweighted mean of the

monthly coefficients. For each band, the largest loss is that found by taking the unweighted
average of the monthly trend estimates. The difference among the estimates is much greater in

the more northerly belts, where there is a very pronounced seasonal difference between the

monthly loss rates. Because the largest losses are occurring in the winter months, during which
the uncertainty in the trend coefficient is greatest, the weighted average reduces the effect of

these months on the year-round estimate. In each band, the winter months are the dominant

contributors to the estimate of the unweighted mean because their absolute values are bigger,

while the summer months are the more important in determining the weighted mean because

their error estimates are smaller. Statistically, the assumption required to attach much meaning

to an average is that each sample is drawn from the same parent population--i.e., the underlying
losses for each month are the same. Because the current photochemical models predict different

losses at different times of the year, and the data themselves show such behavior, this assump-

tion is broken, and thus it is not clear exactly what a year-round average represents.

Table 4.25 Different Ways of Calculating an Annual Rate of Loss.

Latitude band

53°_64°N 40°_52°N 30°_39°N

(a) - 0.14 (.13) - 0.47 (.13) - 0.17 (.11)

(b) - 0.19 (.13) - 0.49 (.11) - 0.25 (.09)

(c) - 0.52 (.20) - 0.63 (.17) - 0.32 (.14)

In the top row (a) are shown the values calculated using a uniform year-round trend term, the classical "hockey stick,"
for the three latitudinal band averages. In row (b) are shown the weighted averages of the monthly loss rates calculated
from the model that allows each calendar month to vary differently, while the bottom row contains the unweighted
averages of the same monthly coefficients. One standard error bar is in parentheses. Allowance is made for the
correlation between the different monthly coefficients.

The validity of the year-round hockey stick model is subject to the same criticisms as the

averages from the monthly models. Unless supported by the data, the assumption of a constant
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year-round loss should not be used, because the model is then misspecified. In the current

analyses, this misspecification leads to rates of ozone loss that are smaller than either the

weighted or unweighted means of the monthly values and it does not indicate the presence of

the relatively large wintertime losses that are observed at higher latitudes.

4.6.3.4 Variation With Time of the Latitude Band Monthly Ramp Coefficients

The observation that the linear regression analysis with monthly ramp coefficients demon-

strates losses of ozone for many of the months in each latitude band does not provide much

information as to when the ozone loss occurred. The reasonable agreement between total ozone

losses estimated for 17 years after 1969 (i.e., 17 x k70M) and 11 years after 1975 (i.e., 11 x k76M)

indicates that much of the total loss occurred after 1976, but does not severely test the underlying

assumption that ozone loss is spread over a 10-17-year period. With other geophysical events

such as the large oceanic E1 Nifio of 1982-1983 and the E1 Chich6n volcanic eruption (April 1982)

prominent during the period of indicated ozone loss, the possibility needs to be considered that

such an event might have triggered a sudden large ozone loss, superimposed on a background of
little or no loss for other reasons. Such hypotheses have been statistically tested by examining the

linear regression coefficients as successive years of ozone data are included in the analysis. For

these tests, the latitude band data from January 1965 on have been analyzed with the addition of

1-year increments of ozone data from 198001986. For each of the three latitude bands, the

regression analysis was carried out successively for 16 years of data (1965-1980), 17 years
(1965-1981), 18 years (1965-1982), and so on through 22 years (1965-1986), with monthly linear

ramps from 1969-198x (i.e., k70M).

The monthly linear coefficients for the seven calculations are graphed for latitude bands
53-64°N, 40052°N, and 30-39°N in Figures 4.55-57. The standard errors become steadily smaller

as the number of years of data is increased. For 31 of the 36 monthly coefficients, the one-sigma
standard errors of all seven (198001986) of the yearly coefficients overlap one another. For 4

consecutive months (AMJJ) in the 40052°N band, the regression coefficients become steadily

more negative and the one-sigma errors do not overlap. For the month of December in the
40-52°N band, the linear regression coefficients become steadily less negative and the one-sigma

errors also fail to overlap. The relatively small changes in the trend coefficients over this period

suggest that the geophysical events of 1982-1983 did not dominate the sign or magnitude of the

monthly trend coefficients. In particular, the strong trend toward negative coefficients is already

apparent in 1980 and 1981 for the winter months (DJFM) in both the 53-64°N and 40052°N
latitude bands.

A simple evaluation of the general suitability of the linear relationships for fitting the ozone
data can be made by calculating the numerical change in the linear regression coefficients as the

endpoint of the data goes from 1980 to 1986, scaled by the standard errors of the analyses. Figure
4.58 shows the distribution of these numerical changes divided by the standard errors for the 36

monthly coefficients in the three bands. For example, the linear coefficients for March in the
53-64°N band were - 0.40 --_0.62 for an endpoint of 1980 and - 1.07 ___0.35 for 1986. The scaled

change in the coefficient, - 0.67 divided by the combined error of 0.71, is graphed as - 0.94. As
indicated, 31 of the 36 monthly coefficients have values within + lo', indicating that the linear

model is generally satisfactory. The median value of the change in regression coefficients from

1980 to 1986 is negative, suggesting a tendency toward more ozone loss in the 1980's than during
the 1970's.
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Figure 4.55 The total ozone trends for the individual months are shown for the latitude band between 53°N
and 64°N illustrating the effect of the addition of successive years of data. The ozone change in each month
was assumed to have occurred in a linear fashion from 1969 until the year shown, and the data used were
from 1965 until the year shown. The statistical model used allowed for effects of the solar cycle and the
quasi-biennial oscillation. The monthly ozone trends are given in DU/yr.

The regression coefficients have also been calculated for an alternate model in which the

ozone changes are not evaluated with linear ramps, but with changes proportional to the

organochlorine (CL) burden of the troposphere--i.e., about twice as much as yearly change in

1986 as in 1970. These coefficients for the successive models from 1980-1986 are shown in Figures

4.59-61, and the changes in the values of the coefficient are graphed in Figure 4.62. The

conclusions from these calculations are very similar to those from the linear model, with a small
drift toward more negative regression coefficients in 1986 than in 1980. In this statistical model,

the magnitude of the indicated ozone losses are marginally higher for 1965-1986 than from the

linear regression model. Such a result is expected if an overall ozone loss has occurred because
the CL model also fits a loss from 1965-1969, while the linear model fits a constant value for the

same period. The data fits are comparable with either the linear or CL statistical models, and

neither is enough superior to warrant its choice as the clearly better model.

4.6,3.5 Calculation of the Seasonal Error Estimates

The standard error, o-_, for the 4-month winter and summer season trend coefficients given in
Table 4.23 are calculated according to Equation 1.
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Figure 4.56 The total ozone trends for the individual months are shown for the latitude band between 40°N
and 52°N illustrating the effect of the addition of successive years of data. The ozone change in each month
was assumed to have occurred in a linear fashion from 1969 until the year shown, and the data used were
from 1965 until the year shown. The statistical model used allowed for effects of the solar cycle and the
quasi-biennial oscillation. The monthly zone trends are given in DU/yr.

4 3 4
1

i=l i=1 j=i+l

(1)

where ori is the standard error for each monthly trend coefficient (so that _r,-2 is the variance

estimate); crij is the covariance between months i andj and is the product of the standard error for

the 2 months with the correlation coefficient of the two monthly trend parameters as shown in
Equation 2.

_ij = Pi)" m" % (2)

Because an unweighted seasonal loss rate is calculated, it is appropriate to use these
expressions to find the standard error. The same method is used in calculating the standard error

of the unweighted annual mean trend in the discussion compares the year-round coefficient

with the unweighted and weighted means of the monthly trends. Equation 3 is used to calculate

the standard error of the weighted mean, o_.
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Figure 4.57 The total ozone trends for the individual months are shown for the latitude band between 30°N
and 39°N illustrating the effect of the addition of successive years of data. The ozone change in each month
was assumed to have occurred in a linear fashion from 1969 until the year shown and the data used was from
1965 until the year shown. The statistical model used allowed for effects of the solar cycle and the
quasi-biennial oscillation. The monthly ozone trends are given in DU/yr.
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Figure 4.58 Distribution of the changes between 1980 and 1986 in the 36 monthly trend coefficients for the
three latitude bands shown in Figures 4.55, 4.56, and 4.57. The difference between the trends calculated for
any particular month when the data through 1980 are used and when the data through 1986 are used is
divided by the combined standard error of the two trend coefficients.
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Figure 4.59 The total ozone trends for the individual months are shown for the latitude band between 53°N
and 64°N illustrating the effect of the addition of successive years of data. The ozone change in each month
was assumed to have occurred in proportion to the organochlorine burden of the troposphere, i.e., in a
nonlinear fashion until the year shown, and the data used were from 1965 until the year shown. The statistical
model used allowed for effects of the solar cycle and the quasi-biennial oscillation. The monthly ozone trends
are given in DU/yr.

-'. _, .,._,+= = i=1 j=i+l

(3)

The relative sizes of the first and second terms in Equation 1 are shown in Table 4.26 for the

winter and summer seasons of three latitude bands. The greater importance of the cross term in
the southern band is due to the higher autocorrelation present, which causes the monthly trend

parameters to be more dependent on one another.

4.6.4 Results From M-83 Regional Averages

As described in Section 4.1.3, the instrument used in the USSR, the M-83, uses a filter rather

than a grating to separate the incoming UV light. Since the filter has a larger bandwidth than a

grating, the measurements taken show greater scatter, which shows up in the statistical analysis
in the form of larger uncertainties. There is also the potential for greater/x-dependent errors

when measurements are taken in winter or away from local noon. The upgraded M-83 instru-

ments have been operated since 1972, so that the length of record is shorter than for most Dobson

stations. However, the M-83 monitoring system covers a large area and provides valuable
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Figure 4.60 The total ozone trends for the individual months are shown for the latitude band between 40°N
and 52°N illustrating the effect of the addition of successive years of data. The ozone change in each month
was assumed to have occurred in proportion to the organochlorine burden of the troposphere, i.e., in a
nonlinear fashion until the year shown, and the data used were from 1965 until the year shown. The statistical
model used allowed for effects of the solar cycle and the quasi-biennial oscillation. The monthly ozone trends
are given in DU/yr.

Table 4.26 Variance and Covariance of the Monthly Trend Estimates Used in Calculating
Seasonal Averages.

Variance Covariance Error Estimate

Winter (DJFM)
53-64°N 1.06 0.95 0.35

40-52°N 0.87 0.94 0.34

30-39°N 0.41 0.60 0.25

Summer (MJJA)
53--64°N 0.22 0.19 0.16
40-52°N 0.17 0.20 0.15

30-39°N 0.14 0.21 0.15

The relative magnitudes of the variance and covariance of the monthly trend estimates used in calculating seasonal

averages. The units are Dobson Units per year.
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Figure 4.61 The total ozone trends for the individual months are shown for the latitude band between 30°N

and 39°N illustrating the effect of the addition of successive years of data. The ozone change in each month
was assumed to have occurred in proportion to the organochlorine burden of the troposphere, i.e., in a

nonlinear fashion until the year shown, and the data used were from 1965 until the year shown. The statistical

model used allowed for effects of the solar cycle and the quasi-biennial oscillation. The monthly ozone trends

are given in DU/yr.
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Figure 4.62 Distribution of the changes between 1980 and 1986 in the 36 monthly trend coefficients for the
three latitude bands shown in Figures 4.59, 4.60, and 4.61. The difference between the trends calculated for

any particular month when the data through 1980 are used and when the data through 1986 are used is

divided by the combined standard error of the two trend coefficients.
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information where no other ground-based measurements are taken. For the purposes of this

report, the data from the M-83 stations were combined to form regional averages, which were

analyzed with the same time series technique. The results of these analyses are presented in
Appendix 4.B. (ii).

Plots of the monthly losses over 1972-1985 are shown in Figure 4.63 for the four chosen M-83

regions--the European, Siberian, South Central Asian, and Far Eastern parts of the USSR. In

both the European and Siberian areas, losses appear to occur in both the fall (September,

October, and November) and in the late spring (March, April, and May). The former tendency is
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Figure 4.63 Ozone changes for four regional averages composed from the USSR M-83 data taken between
1972 and 1986. The statistical model used allowed for effects of the solar cycle and the quasi-biennial
oscillation, and all the available data were used from 1972. The ozone change in each month was assumed to
have occurred in a linear fashion. The monthly ozone changes plotted are not trends; they are found by
multiplying the calculated trend by the period over which the loss was assumed to have occurred. The vertical
bars represent _+1 standard error in the estimate of the change. (a) European region, (b) Siberian region, (c)
South Central Asian region, (d) Far Eastern region.
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stronger in Siberia while the latter is stronger in the European part. The losses in January and

February are small. In the data from the South Central Asian region, there is not much evidence

for a loss; the 2 months with the largest negative trends are December and January. The Far

Eastern results (from only two stations) show no pattern at all toward a loss or a gain. It is worth

recalling that the Japanese stations have observed ozone losses different from the European and

North American stations. Sapporo (43. I°N) does not show a wintertime loss; decreases in total
ozone are observed in both December and March, but not in January or February. Thus, there is

some sign of the bimodal losses measured in the European and Siberian parts of the USSR at

equivalent latitudes. However, the statistical significance of these patterns is not strong enough

to reach any firm conclusions at the current time.

4.7 ANALYSIS OF TOMS DATA NORMALIZED TO THE DOBSON NETWORK

The primary advantage of a satellite instrument is its ability to make truly global measure-

ments (all but the regions in polar darkness). The TOMS instrument has been described in

Section 4.2 of this chapter, and the slight adjustment to its data to use the long-term calibration of

the Dobson network has been described in Section 4.4. All of the data reported in this section use
this adjusted data set. The adjustment corresponds to about 3 percent added to the data in 1987.

4.7.1 Global and Hemispheric Trends

Figure 4.64 shows the latitudinal-seasonal variation of the TOMS total ozone measurements

averaged over 9 years from 1979-1987. The distribution is very similar to that constructed from

the ground-based measurements shown in Figure 4.32 earlier in this chapter. Figure 4.65 shows
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Figure 4.64 Variation of total ozone with latitude and season derived from TOMS measurements between
1979 and 1987.

299



TOTAL COLUMN OZONE

the same latitudinal-seasonal total ozone distribution for each of the 9 years of TOMS data.

Evident in the figure is that the distribution is similar for each year, with some important

differences. The Northern Hemisphere springtime maximum shows interannual variability with

the maximum already appearing to have occurred during the polar night in some years.

Similarly, significant interannual variability exists in the magnitude of the Southern Hemisphere
springtime maximum. Finally, the growth of the springtime Antarctic minimum is evident.
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Figure 4.65 Variation of total ozone with latitude and season derived from TOMS for each year from 1979 to
1987.
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A useful evaluation of global ozone change can be obtained from these data by integrating

over the globe. Figure 4.66 is a plot of the daily global ozone column as measured by TOMS from
November 1978-December 1987. Each year has two maxima, one in the Northern Hemisphere

and one in the southern spring when midtatitude ozone is peaking in the Southern Hemisphere.

The solid line is a simple linear least-squares regression line through the data, giving a linear

trend of -0.4 percent per year. Figure 4.67 shows the same data with the characteristic seasonal

cycle removed. The result is plotted as deviation from the seasonal mean. It is clear that the data

during the first few years of the record are some 2-3 percent higher than the data near the end of

the record. It is difficult to say from this short data record whether the observed decrease is the

result of a negative linear trend or of a significant 11-year solar cycle variation. Figure 4.67(b)

shows a similar integration of the TOMS data in which the integral is extended only to 53 degrees
latitude to eliminate the effects resulting from any direct changes in polar ozone. Again, the

record shows higher ozone in the period around 1980 than in the mid- to late 1980's. A linear

trend has been calculated from these data with an autoregressive model. The results are given in

the first row of Table 4.27. The trend was fit first from the beginning of the data in November

1978-October 1985, a period of 7 years, most of which was during the declining phase of the solar

cycle. The result was a cumulative change of -2.6 -+0.5%. A similar linear trend analysis

extending from November 1978-November 1987, or 9 years of data, showed a cumulative change

of-2.5 + 0.6%. This confirms the conclusion that there appears to be a flattening of the ozone

change over the last 2 years of the record, and is not inconsistent with the notion that there is

some solar cycle component to the global total ozone change.
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Figure 4.66 Globally averaged total ozone from November 1978-December 1987 derived from TOMS
measurements. The solid line is a simple linear least squares fit of the data with a slope of -0.4% yr-_.
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Figure 4.67 (a) Deseasonalized global total ozone derived from TOMS. (b) Deseasonalized total ozone
between 53°N and 53°S derived from TOMS. Percentage deviations from the seasonal means are plotted.

Figure 4.68a,b shows the same area means, again plotted as deviations from the seasonal
mean, broken down into Northern and Southern Hemispheres. Both the Northern and Southern

Hemisphere means show more deviation than the global mean. The Northern Hemisphere has

significant negative deviations in the winters of 1982-1983 and 1984-1985, as has been previously
demonstrated from ground-based data (e.g., Bojkov, 1988). The Southern Hemisphere shows a
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Table 4.27 Percentage Changes in Total Column Ozone (Measured by TOMS on Nimbus-7,
Calibrated by Comparison With Ground-Based Measurements)

Latitude Band Total Change From From Table C-12 Total Change From
11/1978-10/1985 (1969-1986) 11/1978-11/1987

Global, except high latitudes
53°S--53°N -2.6+0.5 -2.5_-_0.6

Hemisphere
0-53°S -2.6+0.9 -2.9_+_0.9

0-53°N -2.1 -+1.5 - 1.8_+ 1.4

Bands
53°S-65°S -9.0-+ 1.8 - 10.6--- 1.6

39°S-53°S -5.0+__ 1.8 -4.9 +-_1.8

29°S-39°S - 3.2 -+2.4 - 2.7 _+2.1

19°S-29°S - 2.5 -+1.9 - 2.6 +-_1.5

0--19°S - 1.1 -+0.8 -2.1 _+0.8

0-19°N - 1.1 -+1.5 - 1.6 +-1.3

19°N-29°N - 3.5 -+2.2 - 3.1 -+1.9
29°N-39°N - 3.7 -+2.0 - 1.7 +_0.7 - 2.5 _-_1.7

39°N-53°N -2.7+ 1.7 -3.0_+ 0.8 - 1.2_+ 1.5

53°N-65°N - 2.4 -+1.6 - 2.3 -+0.7 - 1.4 _+1.4

(Linear trends with an autoregressive model through TOMS data, with uncertainties at the one sigma level of
significance.)

significant apparent quasi-biennial oscillation with a particularly large negative deviation in the

summer of 1985-1986. The fitted linear trends using an autoregressive model are again given in

Table 4.27. As with the global change, the 9-year trends are approximately equal cumulatively to
the 7-year trends. The Southern Hemisphere has a slight increase in the downward change with

the added 2 years, while the Northern Hemisphere actually shows somewhat less total change.

(Note added: Inclusion of data through October 1988 indicates a tendency toward reversal of the

downward trend in the Southern Hemisphere, but not in the Northern Hemisphere.) Any

conclusions about whether there is any reversal or flattening of the trend are made on variations

that are within the one-sigma limits of the data and should, therefore, be viewed with caution.
Likewise, it should be remembered that this analysis did not include any evaluation of a

contribution from the l 1-year solar cycle.

4.7.2 Trends in Latitude Bands

The TOMS data can be further broken down by latitude bands. Figure 4.69a-j shows the daily

deviations of TOMS total ozone data from weekly means. Deviations are given in percent, and,

as above, all data have been normalized to the observed mean drift of TOMS with respect to the

Dobson stations during the overpasses of Nimbus-7 over 41 stations. The latitude regions shown
were chosen to correspond to an analysis of the Dobson network by Bojkov (1988). They are a)

53-65°S, b) 39-53°S, c) 29-39°S, d) 19-29°S, e) 0-19°S, f) 0-19°N, g) 19-29°N, h) 29-39°N, i)

39-53°N, and j) 53-65°N. Note that the scale of the deviations has been doubled compared to the

global and hemispheric plots.
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Figure 4.68 Zonal means of total ozone derived from TOMS for the areas between (a) 0-53°N and (b)
0-53°S. Percentage deviations from the seasonal means are plotted.

The Northern Hemisphere minimum of the winter of 1982-1983 does not appear in the

tropical data from the Equator to 19°N but does appear in the rest of the latitude bands up to

65°N. The minimum of the winter of 1984-1985 also is not in the tropical data, nor is it in the

53-65°N data. However, it is more pronounced in the data from 19-39°N than is the minimum
of the winter of 1982-1983. It is suggestive that this northern hemispheric minimum is coincident

with the spread of aerosol from the E1 Chich6n eruption throughout the Northern Hemisphere,
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Figure 4.69 Zonal means of total ozone derived from TOMS for various latitude bands are plotted as
percentage deviations from the weekly means. (a) 53-65°S, (b) 39-53°S, (c) 29-39°S, (d) 19-29°S, (e)
0-19°S, (f) 0-19°N, (g) 19-29°N, (h) 29-39°N, (i) 39-53°N, (j) 53-65°N.
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although no cause and effect relationship has been established, and Schuster et al. (1988) have

proposed that the observed perturbation to total ozone levels could be due to a modification of

the QBO signal by the E1 Chich6n aerosol. Another possible cause was the strong E1 Niho in

1982-1983. The Southern Hemisphere minimum that spans mid- to late 1985 extends over all

latitudes from 19-65°N, and another strong minimum appears between 19-39°N in late 1980.

The linear trends for the first 7 years and the entire 9-year data set deduced with an

autoregressive model are shown in Table 4.27. The trends are all negative, but generally not

significant at the two-sigma level. The main exceptions are the two most southerly latitude

bands. The decreases in these bands occur primarily in the southern circumpolar ring of high

ozone and have been noted in previous studies of the Antarctic ozone hole (e.g., Stolarski et al.,
1986; Stolarski and Schoeberl, 1986).

4.7.3 Global Maps of the Difference Between 1986-1987 and 1979-1980 Total Ozone

The behavior of many of the time series shown in the previous section is that the total ozone

amount is relatively constant for the first few years of the record and then again relatively

constant at a lower value near the end of the record. This suggests that some understanding of

the change may be gained by comparing these two portions of the record as a function of season,

latitude, and longitude. Figure 4.70 is a contour plot of the difference in total ozone between the

TOMS (1986+87) MINUS (1979+80)
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Figure 4.70 Changes by month and latitude in total ozone between 1979-1980 and 1986-1987 as
measured with TOMS on the Nimbus-7 satellite (2-year averages are used to minimize differences
originating with the QBO). Contour plots are given for intervals of 2 percent change. The TOMS instrument
operates with sunlight scattered from the atmosphere and, therefore, provides no data from the areas in the
polar night.
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last 2 full years of the record (1986 and 1987) and the first 2 full years (1979 and 1980) as a function

of latitude and season. The most obvious feature of this figure is the springtime Antarctic ozone
hole. A general decrease of greater than 5 percent also appears at all latitudes south of 50°S for all

seasons. The rest of the globe shows smaller changes, which are more negative than positive.

The northern high-latitude spring has a small region of greater than 5 percent decrease, which
raises the possibility that this is related to processes occurring in the northern winter (see section
above on ground-based data).

Further details of the ozone change from 1979-1980 to 1986-1987 can be obtained by
examining global maps versus latitude and longitude for specific months; these are shown in

Figure 4.71a-1. The Antarctic springtime ozone hole is again obvious. Changes over most of the
globe are negative, but significant positive change regions also exist. It is not clear from these

data whether there is any physical significance to these positive regions. More likely, if other

years are taken, the regions of positive and negative will move around but will still be pre-
dominantly negative. The north polar region shows interesting behavior in a number of months.

For example, in March a large negative change is observed over the northern USSR, while a large

positive region is observed over northeastern Canada and Greenland. This pattern results

primarily from a shift in the pattern of the pole-centered high between the two sets of years that
have been compared.

TOTAL OZONE CHANGE FOR JANUARY

(1987 + 1986)--(1980 + 1979)

Figure 4.71 (a-l) TOMS maps of monthly (January through December) total ozone change averaged from
1979 through 1987. Left side of each panel shows Northern Hemisphere; right side of panel shows Southern
Hemisphere. Total ozone is given in Dobson Units (milli-atmosphere-cm) as indicated in color bar.
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TOTAL OZONE CHANGE FOR APRIL

(1987 + 1986)--(1980 + 1979)

TOTAL OZONE CHANGE FOR MAY
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TOTAL OZONE CHANGE FOR AUGUST
(1987 + 1986)--(1980 + 1979)

TOTAL OZONE CHANGE FOR SEPTEMBER

(1987 + 1986)--(1980 + 1979)
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TOTAL OZONE CHANGE FOR DECEMBER

(1987 + 1986)--(1980 + 1979)

4.8 SUMMARY

It is important to ensure that the best available data are used in any determination of possible

trends in total ozone in order to have the most accurate estimates of any trends and the
associated uncertainties. Accordingly, the existing total ozone records have been examined in

considerable detail. Once the best data set has been produced, the statistical analysis must

examine the data for any effects that might indicate changes in the behavior of global total ozone.
The changes at any individual measuring station could be local in nature, and in this study

particular attention has been paid to the seasonal and latitudinal variations of total ozone,

because 2-D photochemical models indicate that any changes in total ozone would be most

pronounced at high latitudes during the winter months. The conclusions derived from this

detailed examination of available total ozone can be split into two categories, one concerning the

quality and the other the statistical analysis of the total ozone record.

Data Quality

The published data of both ground-based and satelliteborne instruments have been shown to

contain incongruities that have been traced back to instrument calibration problems. In the case

of the ground-based record, the corrections for these calibrations have not been applied to the

data before publication in ODW. Correcting the data for known calibrations is essential if one is

to believe the results of statistical analyses of the data set. Fortunately, complete revisions of the

total ozone data set can be performed at many ground-based stations because good day-to-day

records have been kept. At stations whose daily records have been lost, the correct adjustments
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to the total ozone data are irrecoverable. For the purposes of this report, a provisionally revised

data set was prepared, with the corrections caused by recalibrations being applied to the

monthly averages and not to the individual daily measurements. The provisionally revised data

are taken as being the best currently available set for two reasons: the effects of the known,

periodic recalibrations of the Dobson instruments are accounted for and the consistency of
external data such as measurements from proximate stations, stratospheric temperatures, and

satellite overpasses is found to be greater with the provisionally revised data sets than with the

data published in ODW.

The TOMS satellite data have been compared with measurements taken by the International

Primary Standard Dobson Instrument (No. 83) while it was being calibrated at Mauna Loa; it was
found that the two instruments had drifted relative to each other. A similar result was found in a

TOMS-Dobson data comparison during overpasses of the TOMS instrument at 92 ground-based

stations. The SBUV data have been drifting in a similar manner, and the conclusion was reached

that the cause of this effect was the degradation of the diffuser plate on Nimbus-7, the only

common component of the TOMS and SBUV systems. The TOMS data were then normalized to

agree with the 92 ground-based stations. Because Instrument No. 83 is used as the main
calibrating instrument for the Dobson network and because the TOMS satellite data revision is

also based partially on the results of a comparison with Instrument No. 83, a detailed review of

the absolute calibrations used with this instrument was made and no problems were discovered.

Analysis

Initial examination of both the published (ODW) and provisionally revised data sets indicates

that, in recent years, a decrease in total ozone has occurred at latitudes poleward of 40°N,

particularly in the winter months (see Figures 4.45--48). This result showed the need for a
statistical analysis of the revised data that investigated the effects of season and latitude on any

changes. Unfortunately, the spatial distribution of the Dobson stations is poor, with most of the

instruments placed in Europe or North America, so that the portion of the globe for which there

is reasonable coverage is limited to the latitudes from 30-80°N. Even in this area, the longitudinal

coverage is poor, although it was greatly extended in 1972 when the upgraded M-83 filter

ozonometers were introduced in the USSR. A time series model for the ground based total ozone

record was used that included terms for the natural seasonal cycle, the natural autocorrelation,
the effects of such geophysical phenomena as the quasi biennial oscillation, the solar cycle, and

the atmospheric nuclear bomb testing that took place between 1957 and 1963. Statistical tests for

possible trends in recent years were conducted using both the older assumption of no season-

ality in any ozone trends, and with allowance for different trends for each calendar month.

The analysis of the provisionally revised data from 1965-1986 again showed that there had

been a significant wintertime loss at higher latitudes since 1969, and that between 30°N and 39°N
there had been a year-round decrease. The data period from 1965-1986 is advantageous for three

reasons: it contains two complete solar cycles, minimizing any residual effects from an inad-

equate modeling of the effects of the solar cycle on total ozone; any effects of the atmospheric

nuclear bomb tests ending in the early 1960's will be small; and before 1965, fewer stations were

taking measurements. When the data from 1957-1986 was considered, the wintertime loss was

still apparent. The trends were slightly smaller than those calculated using the shorter time

period, but they easily lay within the combined uncertainties. The modeled effect of the

atmospheric bomb tests was found to be slightly larger than that derived from the statistical
analysis of the measurements, although within the calculated uncertainty. The effect of the QBO

on total ozone was statistically significant at most latitudes, while the effect of the solar cycle was
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marginally significant. When the earlier data were included in the analysis, the calculated effect
of the solar cycle was reduced, making it hard to reach any firm conclusions about the

relationship between the solar cycle and total ozone. The period of low total ozone values over

the Northern Hemisphere in 1982-1983 was not the dominant cause of the measured ozone

decreases since 1969. In particular, the seasonal nature of the losses is evident in the data record

through 1981.

Conclusions

The main conclusions of this chapter can be listed as follows:

• Examination of the published total ozone record reveals a need for a revision of the data.

• Provisionally revised sets of measurements have been prepared for both the ground-based
stations and the TOMS satellite instrument.

• Statistically significant losses have occurred in the late winter and early spring in the

Northern Hemisphere. For example, in the latitude band from 53-64°N, a loss of 6.2 percent
is measured for December, January, February, and March from 1969-1986 when the data
from 1965-1986 are considered.

• The seasonal and the latitudinal variations of these losses agree with the results of current

2-D photochemical models in nature, if not in magnitude.

• There is some evidence for longitudinal variations in the measured trends.
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Chapter 4 Appendix

Contents

A, Tables of provisionally revised data (Bojkov, private communication, 1987)* ...... 317

(i) Stations (alphabetical order) .......................................... 318-334

(ii) Latitudinal band averages ............................................ 335-340

B, Tables of trend coefficients ................................................... 341

(i) Stations ............................................................ 342-373

(ii) Latitude band averages .............................................. 374-382

*If the enclosed ozone data are used in future work, consideration should be given to the

method of revision utilizing calibration, intercomparison data, stratospheric temperatures, and

TOMS data for flagging major discrepancies.

A. (i) Provisionally revised station data used in the time series analyses.

Arosa I 1/57-12/86 Leningrad 8/68--12/85

Aspendale 7/57-12/86 Lerwick 1/57-11/86
Belsk 1/63-12/86 MacQuarie Isle 1/63-12/86
Bismarck 1/63-12/86 Mauna Loa 1/63-12/86

Boulder 1/64-12/86 Nashville 1/63-12/86

Bracknell 1/69-12/86 Quetta 8/69-12/86

CagliarivElmas 1/57-12/86 Reykjavik 11/75-10/86

Cairo 11/74-10/86 Rome (Vigna di Valle) 1/57-12/86
Caribou 6/62-12/86 Samoa 2 1/76-12/86

Churchill 1/65-12/86 Sapporo 1/58-12/86

Edmonton 7/57-11/86 Srinigar 2/64- 5/86

Goose Bay 1/62-11/86 Tateno 7/57-12/86
Hohenpeissenberg 1/67-12/86 Toronto 1/60-12/86
Hradec Kralove 1/62-i2/86 Uccle 2/71-12/86

Huancayo 2/64- 6/86 Wallops Island 1/70-12/86

Kagoshima 4/61-12/86

1Data accepted in unrevised form from Ozone Data for the World.
2Data revised and supplied by W.D. Komhyr et al. (1987).
_AII other data are the monthly averagesof total ozone published in Ozone Data for the World with the appropriate
averagemonthly corrections applied, lhe amounts are given in Dobson Units.
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Average Ozone Values at AROSA

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1957 327 326 336 359 372 338 320 312 292 271 287 321

1958 346 336 393 398 358 349 336 311 286 291 287 308
1959 356 362 366 382 375 355 324 319 304 289 297 321

1960 342 381 405 388 365 341 335 314 307 304 285 318

1961 356 324 334 357 364 339 328 304 279 277 294 299

]962 341 360 425 383 358 342 323 300 293 267 295 299

1963 359 410 379 377 372 348 318 310 284 275 278 295

1964 304 337 348 374 362 324 315 311 293 288 272 307

1965 331 384 379 372 374 332 329 3t7 304 276 280 314
1966 347 339 395 375 366 344 324 317 297 279 314 315

1967 354 358 351 366 343 346 316 312 292 273 269 301

1968 338 386 381 372 346 344 324 328 306 276 274 332

1969 335 418 362 377 347 356 327 327 290 278 305 334

1970 325 408 408 416 382 355 329 321 296 286 274 312

1971 344 351 409 366 361 352 324 305 314 276 292 303

1972 345 363 382 369 363 350 327 309 315 291 291 308

1973 320 384 363 428 348 343 342 311 290 286 270 299

1974 329 369 343 378 361 350 316 308 289 327 297 282

1975 308 340 368 365 353 344 317 310 283 283 295 289

I976 340 352 360 375 351 346 325 326 309 277 286 31I

1977 358 391 347 373 369 352 335 322 302 271 291 301
1978 328 363 346 386 373 355 330 315 289 287 277 294

1979 345 378 373 402 365 337 328 314 289 287 281 306
1980 327 334 358 390 378 354 328 305 286 278 285 300

1981 324 378 357 365 370 329 323 310 295 290 281 309

1982 334 375 389 367 359 345 318 318 284 282 273 288

1983 291 354 331 359 344 333 313 314 287 273 270 296

1984 339 371 378 364 369 339 318 316 299 284 279 291

1985 355 336 353 344 342 332 312 295 279 276 301 288
1986 356 386 356 380 342 331 320 303 286 279 286 298
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Provisionally Revised Average Ozone Values at Aspendale

Year Jan Feb Mar Apt May Jun Jul Aug Sep Oct Nov Dec

1957 0 0 0 0 0 0 348 354 358 345 328 311

1958 309 294 294 280 295 345 376 366 399 382 341 322

1959 291 300 292 279 308 323 318 332 350 346 318 316

1960 293 285 288 287 318 341 353 383 388 367 341 315

1961 302 303 283 283 292 300 313 337 329 335 315 303

1962 293 288 288 282 308 316 344 378 374 386 339 319

1963 306 292 294 286 304 338 356 359 369 346 340 317

1964 31I 3t7 284 283 302 337 357 365 364 359 327 326

1965 304 292 286 295 301 328 357 361 358 352 338 305

1966 301 287 289 286 302 309 333 334 356 341 323 307

1967 296 286 288 278 296 306 347 361 367 355 340 330

1968 287 293 283 287 314 321 342 368 370 364 333 324

1969 297 291 286 282 300 320 3t7 328 355 340 340 325

1970 310 297 297 289 308 333 349 373 389 368 341 327

1971 312 300 285 287 315 329 337 356 359 362 336 319

1972 300 301 286 277 297 322 362 364 376 361 345 312

1973 300 297 301 289 296 323 332 351 358 357 325 310

1974 288 298 285 289 308 329 359 378 380 367 342 319

1975 317 294 292 289 296 322 330 357 348 354 328 298

1976 288 287 295 292 299 319 333 353 365 374 342 317

1977 303 291 287 284 307 331 346 356 356 350 323 298

1978 290 288 300 286 308 329 351 375 384 360 333 327

1979 290 287 288 295 306 317 335 366 374 366 349 313

1980 309 293 286 284 298 316 325 326 339 338 323 303

1981 291 284 293 272 296 333 348 367 344 361 342 310

1982 294 289 290 292 312 324 334 322 357 356 317 310

1983 280 270 261 281 286 314 329 353 346 361 334 302

1984 291 283 274 278 301 321 354 358 370 348 330 309

1985 292 284 272 279 284 299 311 334 337 335 309 297

1986 295 280 271 272 284 315 333 350 356 356 323 310

319



TOTAL COLUMN OZONE

Provisionally Revised Average Ozone Values at Belsk

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1963 370 430 410 386 395 391 347 327 295 293 288 314

1964 318 371 386 414 395 344 339 334 307 295 275 328

1965 358 407 423 413 405 367 352 335 304 289 319 354

1966 402 393 445 397 388 363 354 330 316 296 311 353
1967 380 371 401 383 356 362 338 323 296 282 280 347

1968 406 400 401 385 368 355 347 333 310 291 273 361

1969 366 415 408 417 375 375 344 345 298 291 303 353
1970 360 452 428 427 381 383 356 334 327 313 312 328

1971 352 406 415 406 379 384 333 304 334 296 298 317

1972 365 365 404 395 381 370 340 327 315 3t5 307 321

1973 345 399 399 438 385 374 367 333 304 311 321 335

1974 351 383 355 405 403 380 355 326 300 331 296 302

1975 340 358 387 402 367 359 346 324 294 295 303 302

1976 354 363 397 392 384 368 348 338 316 288 297 349
1977 380 427 388 408 383 376 367 337 316 287 307 316

1978 364 400 379 410 400 390 364 340 315 288 290 306

1979 386 401 427 438 395 359 366 333 300 298 294 339

1980 343 360 402 428 406 376 370 332 310 297 300 323

1981 347 376 378 392 396 356 347 329 308 316 298 340

1982 352 404 421 410 392 385 352 342 301 298 273 291
1983 309 355 371 372 355 355 337 326 293 290 281 301

1984 356 354 391 400 384 382 358 328 324 30I 277 305

1985 375 399 383 382 372 371 343 307 303 283 295 323
1986 388 404 363 396 374 361 354 330 295 294 285 321

Provisionally Revised Average Ozone Values at Bismarck

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1963 387 394 406 398 382 337 321 302 282 276 311 322

1964 371 398 420 383 365 345 323 313 302 295 304 343

1965 358 383 415 379 355 334 319 302 311 288 296 352

1966 390 418 398 411 383 363 323 326 296 314 326 357

1967 373 446 385 383 387 353 338 322 287 294 323 329

1968 375 402 406 389 383 356 334 324 310 304 334 365

1969 366 397 430 365 366 361 319 299 293 303 304 353

1970 388 392 429 408 367 348 330 309 312 330 370 333

1971 373 381 407 376 373 342 328 304 308 286 304 343

1972 368 392 390 387 366 343 332 301 315 299 339 350

1973 365 369 376 404 390 352 331 314 302 306 316 339

1974 369 399 423 391 373 340 321 332 304 283 32t 348

1975 377 390 402 412 378 359 319 318 312 299 312 331

1976 349 371 384 360 354 334 315 308 294 302 335 334

1977 400 380 418 376 359 348 331 324 304 309 319 372

1978 374 386 374 373 370 340 322 313 292 288 307 334

1979 376 399 403 404 391 347 334 313 299 303 333 312

1980 356 391 406 382 371 346 326 320 307 298 307 294

1981 355 392 385 390 378 353 320 317 292 304 311 360

1982 388 414 403 412 380 366 343 312 297 295 313 339

1983 338 361 393 400 385 342 311 300 310 300 302 358

1984 363 389 405 379 370 346 320 302 314 301 308 318

1985 336 371 370 354 332 345 315 322 308 306 349 355

1986 366 396 368 356 341 308 316 302 306 287 308 322
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Provisionally Revised Average Ozone Values at Boulder

Year Jan Feb Mar Apr May Jun Ju| Aug Sep Oct Nov Dec

1964 345 370 399 380 352 338 299

1965 328 346 382 350 347 325 312

1966 354 385 366 378 367 340 318

1967 324 354 335 342 353 343 31l

1968 324 347 377 376 355 333 314

1969 304 352 392 362 336 346 306

1970 328 342 398 387 368 345 315

1971 329 366 359 372 365 335 322

1972 345 347 339 359 348 329 311

1973 342 318 379 390 348 332 318

1974 344 357 364 380 340 334 315

1975 328 344 365 384 364 338 310

1976 310 326 364 349 344 325 304

1977 342 361 387 364 347 324 318

1978 312 315 337 328 339 319 309

1979 347 361 369 372 358 319 314

1980 314 340 372 361 360 312 303

1981 316 341 357 335 361 315 307

1982 336 361 370 379 361 339 308

1983 302 316 370 376 364 324 306

1984 336 353 374 368 333 32I 304

1985 319 335 322 336 322 313 295

1986 319 314 340 328 334 311 300

312 294 281 279 335
302 295 278 285 313

319 297 301 296 321

315 295 272 283 319

313 304 288 291 308

310 305 296 289 312

314 305 313 298 302

315 310 292 295 317

296 290 285 316 313

305 303 286 302 308

313 299 281 284 332

317 305 290 288 308

303 299 300 294 295

305 284 278 274 298

304 291 278 282 286

301 289 280 305 294

299 290 286 279 281

301 293 287 283 298

304 290 270 284 314

289 285 273 277 336

300 289 299 289 289

293 289 272 308 295

300 288 278 280 305

J

Provisionally Revised Average Ozone Values at Bracknell

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

I969 365 415 413 404 409 384 360 352 313 29I 306 313

1970 375 4]2 436 434 389 382 368 358 329 302 300 327
1971 394 391 412 397 393 384 352 341 316 296 295 318

1972 369 418 419 401 403 395 359 331 313 315 290 324
1973 338 374 379 445 399 369 364 336 308 302 282 294

1974 378 400 396 401 394 392 350 343 332 332 327 298

1975 330 374 419 401 406 375 357 338 318 304 297 299

1976 339 369 374 384 393 355 348 344 321 301 303 333
1977 365 390 396 422 414 386 363 335 295 286 306 320

1978 353 379 382 420 386 369 345 326 283 283 292 310

1979 353 381 418 435 408 372 353 346 302 304 295 332

1980 336 360 398 403 406 387 365 333 303 303 306 312

1981 310 371 393 399 405 368 361 326 317 316 287 337

1982 366 402 411 386 388 371 352 347 304 294 287 289

1983 332 340 346 417 40I 358 334 33I 298 287 267 309

1984 363 360 410 384 426 374 348 335 320 31I 299 312

1985 360 363 384 370 381 384 341 335 292 284 308 317

1986 347 376 386 445 391 361 356 352 316 292 304 327
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Provisionally Revised Average Ozone Values at Cagliari

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1957 330 326 345 360 366 333 310 301 292 28,4 303 309

1958 342 349 384 394 348 349 319 3(17 312 293 319 308

I959 340 355 363 378 371 351 321 312 304 299 298 338

1960 340 346 371 381 344 340 322 313 324 297 279 334

1961 341 328 343 345 351 347 3t2 3(13 301 286 299 306

1962 347 363 383 367 351 337 311 292 296 280 297 316

1963 348 393 380 385 386 355 327 314 303 297 292 3t2

1964 319 329 339 356 359 334 325 317 304 301 280 327

1965 343 385 371 394 364 346 312 315 314 299 3(16 312

1966 338 327 382 382 381 35(] 340 320 327 300 309 328

1967 354 360 347 361 347 353 314 310 306 292 297 334

1968 379 371 385 360 349 338 322 316 316 309 307 344

1969 334 356 360 374 342 358 333 332 334 315 312 351

1970 361 363 374 387 381 353 334 327 323 3(11 310 332

1971 348 380 401 376 364 343 314 324 309 313 323 334

1972 366 379 385 394 380 350 347 328 325 317 300 327

1973 343 382 381 368 341 34(I 318 320 306 295 295 323

1974 346 372 386 395 360 333 319 311 297 306 297 301

1975 307 348 370 354 362 347 318 321 287 280 294 308

I976 320 35t 362 365 346 346 322 310 301 286 302 321

1977 360 371 357 373 37(1 345 323 325 322 299 297 303

1978 357 334 362 39I 376 349 330 324 320 3(12 311 300

1979 350 383 380 412 378 349 323 327 323 300 306 322

I980 331 336 376 391 388 351 338 317 31(! 298 303 320

1981 342 359 369 374 360 337 330 320 310 2_8 303 331

1982 376 406 385 378 348 322 326 3]3 311 300 311 312

1983 309 344 35I 355 340 330 321 320 309 299 298 326

1984 344 370 395 378 360 335 325 323 319 306 303 3ll

1985 316 322 343 340 336 317 312 315 303 292 312 322

1986 342 359 369 374 360 343 330 310 3(12 295 325 315

Provisionally Revised Average Ozone Values at Cairo

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1974 0 0 0 0 0 0 0 0 0 0 266 291
1975 291 294 310 314 324 316 308 297 291 276 275 294

1976 307 314 329 318 320 309 302 297 288 282 276 290
1977 318 311 32(] 327 329 _ 3(12 798._-- _ 29(1 286 271 293
1978 267 286 302 30t 300 302 294 293 284 286 301 289

1979 306 298 323 321 328 316 305 302 295 280 275 296
1980 297 310 306 312 31_ 308 303 30(1 291 28t 282 282

1981 318 317 339 329 335 3II 304 298 289 286 292 293

1982 300 359 35i 325 339 315 31(] 302 293 281 291 280

1983 302 300 322 319 324 305 300 298 290 282 281 289
1984 3(11 294 311 333 319 305 300 295 293 281 279 277

1985 250 279 29i 309 316 298 298 294 288 279 284 293

1986 294 303 322 318 338 296 293 298 287 284 0 0
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Provisionally Revised Average Ozone Values at Caribou

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1962 0 0 11 (1 0 360 344 324 310 306 315 366

1963 413 439 428 419 411 368 345 348 316 308 326 373

1964 382 418 434 425 390 377 346 337 312 313 319 358

1965 380 399 431 420 384 361 35(1 335 304 318 331 378

1966 388 432 432 441 417 369 367 344 342 324 319 363

1967 388 430 435 401 409 361 347 330 314 303 334 348
1968 426 440 412 3% 398 364 351 339 3(16 311 332 365

I969 364 415 447 430 405 360 367 334 324 321 314 361

197(1 427 444 447 432 379 379 348 340 323 322 328 362

1071 395 420 421 416 371 382 348 330 309 286 311 354
1972 364 404 414 412 378 369 342 331 299 336 339 342

1973 364 415 378 395 395 357 344 326 329 307 339 340
1974 368 419 459 423 391 361 355 334 313 324 319 356

1975 369 406 41(1 418 387 362 339 327 316 310 321 337

1976 376 395 384 36(1 389 347 346 318 315 316 326 353

1977 475 396 423 441 4(}5 392 349 324 318 315 302 362

1978 373 425 422 410 371 355 346 319 315 315 291 340

1979 376 422 409 437 378 365 353 336 313 312 323 361

1980 380 449 424 415 4(18 382 360 326 327 309 316 366

I981 386 374 419 427 397 382 359 331 318 318 333 337

1982 394 414 417 42(/ 386 376 359 357 313 308 304 318

1983 344 369 383 383 381 355 345 332 304 302 312 341

1984 366 390 427 4(10 382 362 343 331 322 304 322 316

t985 402 405 384 402 385 370 341 333 310 312 326 373

1986 382 397 401 388 374 352 338 327 294 304 325 321

Provisionally Revised Average Ozone Values at Churchill

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1965 400 445 451 431 411 351 356 339 332 334 331 398

1966 422 464 460 449 417 380 362 341 318 347 366 388

1967 397 464 463 442 416 374 35I 334 301 334 343 369

1968 433 440 438 456 412 382 379 355 315 336 370 398

1969 417 425 482 443 455 420 366 33I 309 325 329 389

1970 43(} 503 469 470 443 367 362 350 334 346 356 365

1971 410 456 465 447 419 389 373 331 317 333 351 374

1972 406 469 473 452 419 376 378 341 366 339 371 398

1973 4(1l 484 436 448 405 383 364 334 329 333 328 354

1974 379 443 518 459 420 388 365 343 331 329 363 391

1975 411 438 479 454 407 378 353 372 317 330 337 362

1976 351 432 459 412 404 359 345 314 320 320 349 368

1977 390 428 486 453 382 389 375 370 322 326 366 370

1978 38(1 403 493 452 411 394 365 346 303 318 322 349

1979 404 466 464 444 420 396 357 355 319 330 378 370

1980 403 436 494 412 397 392 367 336 338 316 358 345

1981 360 442 457 475 426 392 351 318 310 303 360 400

1982 416 444 46(} 472 4(18 402 367 339 311 31(1 355 356

1983 379 420 438 422 437 359 340 322 327 319 356 390

1984 396 451 454 410 420 371 358 314 330 3{)6 370 361

1985 380 434 448 436 407 373 359 334 3t6 332 342 327

1986 4(/4 428 454 430 391 393 360 345 327 318 331 344
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Provisionally Revised Average Ozone Values at Edmonton

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1957 0 0 0 0 0 0 326 305 278 283 294 317

1958 319 407 431 425 365 350 334 296 315 296 354 357

1959 384 419 436 422 399 360 334 335 3t2 309 306 376

1960 377 442 422 400 399 379 322 328 301 296 341 329

196l 366 413 407 430 386 332 325 297 310 309 322 338

1962 325 452 432 400 371 355 331 308 292 282 301 305

1963 346 383 418 387 402 365 343 312 277 301 323 306

1964 387 409 448 404 388 36(/ 330 321 32(1 294 3t0 359

1965 374 415 415 388 388 362 328 3(12 313 300 302 392
1966 403 426 430 417 381 386 350 329 293 320 344 366

1967 405 403 433 394 374 352 327 301 280 309 323 316

1968 376 377 405 410 382 368 342 333 309 318 336 376

1969 414 412 417 379 382 344 344 310 297 295 312 375

1970 423 406 442 422 387 334 333 316 316 312 331 351

1971 397 389 423 398 368 366 336 290 303 305 322 360

1972 397 412 402 405 371 345 357 301 335 297 359 384
1973 391 415 402 406 376 364 344 3]8 292 311 330 340

1974 386 423 460 401 396 354 340 311 277 289 361 379

1975 392 396 419 417 400 374 324 315 290 319 319 358
1976 337 408 415 372 374 367 336 3(14 277 289 319 354

1977 363 380 451 404 393 362 361 333 318 309 350 359
1978 366 375 388 388 381 352 337 323 299 285 299 335

1979 374 433 394 415 402 376 342 317 295 306 336 336

1980 375 397 443 377 373 369 349 339 306 297 328 309
1981 339 397 393 418 382 390 347 304 294 294 327 378

1982 398 428 410 437 391 360 352 324 291 294 323 364

1983 347 380 407 380 376 354 336 306 313 290 335 376

1984 364 409 393 393 387 361 334 309 319 305 351 361

1985 319 390 399 38I 358 361 330 322 310 320 342 303

1986 373 405 400 394 353 344 348 309 314 280 321 0

Provisionally Revised Average Ozone Values at Goose Bay

Year Jan Feb Mar Apt May Jun Jut Aug Sep Oct Nov Dec

1962 326 305 278 283 294 317 319 407 431 425 365 350

1963 334 296 315 296 354 357 384 419 436 422 399 360

1964 334 335 312 309 306 376 377 442 422 400 399 379

1965 322 328 301 296 34I 329 366 413 407 430 386 332

1966 325 297 310 309 322 338 325 452 432 400 371 355

1967 331 308 292 282 301 305 346 383 418 387 402 365

1968 343 312 277 301 323 306 387 409 448 404 388 360

1969 330 321 320 294 31(1 359 374 415 415 388 388 362

1970 328 302 313 30(1 302 392 4113 426 430 417 381 386

1971 350 329 293 320 344 366 405 403 433 394 374 352

1972 327 301 280 3(19 323 316 376 377 405 410 382 368

1973 342 333 309 318 336 376 414 412 417 379 382 344

t974 344 310 297 295 312 375 423 406 442 422 387 334

1975 333 316 316 312 331 351 397 389 423 398 368 366

1976 336 290 303 305 322 360 397 412 402 405 371 345

1977 357 301 335 297 359 384 391 415 402 406 376 364

1978 344 318 292 311 330 340 386 423 460 401 396 354

1979 340 311 277 289 361 379 392 396 419 417 400 374

1980 324 315 290 319 319 358 337 408 415 372 374 367

198I 336 3(14 277 289 319 354 363 380 451 4(14 393 362

1982 36t 333 318 309 350 359 366 375 388 388 381 352

1983 337 323 299 285 299 335 374 433 394 415 402 376

1984 342 317 295 306 336 336 375 397 443 377 373 369

1985 349 339 306 297 328 309 339 397 393 418 382 390

1986 347 304 294 294 327 378 398 428 410 437 391 0
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Provisionally Revised Average Ozone Values at Hohenpeissenberg

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1967 360 364 360 372 -345 347 326 320 296 274 269 310

1968 350 390 392 380 362 358 342 334 312 277 275 337

1969 337 412 373 400 356 365 331 332 293 282 306 341

1970 330 426 415 426 385 359 339 327 297 287 291 323

1971 356 373 407 374 359 359 329 308 309 263 288 294

1972 343 369 384 374 371 354 334 31I 320 297 298 311

1973 329 389 378 459 355 344 343 317 292 292 276 308

1974 341 383 335 382 371 361 324 311 295 330 295 288

1975 310 342 376 371 360 353 324 319 287 279 302 292

1976 363 360 358 38] 357 341 326 328 308 279 292 317

1977 374 403 364 383 378 361 343 329 310 278 294 308

1978 356 395 363 405 388 370 341 318 283 269 272 283

1979 363 376 378 406 373 345 339 317 289 283 286 316

1980 346 340 379 39I 389 362 341 309 289 278 281 31I

1981 337 374 362 372 368 337 330 313 297 297 281 329

1982 348 385 404 373 369 356 328 321 284 284 273 293

1983 298 339 340 355 343 339 319 319 291 273 271 310

1984 349 370 396 395 387 361 337 325 311 290 279 304

1985 36I 359 369 360 354 350 325 309 286 281 300 295

1986 360 361 369 380 357 347 337 320 296 289 299 314

Provisionally Revised Average Ozone Values at Hradec Kralove

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1962 389 399 446 377 369 342 326 308 294 266 316 342

1963 384 431 404 395 386 377 330 311 293 295 299 318

1964 333 374 374 399 377 331 318 310 289 282 288 315

1965 373 413 414 399 375 347 336 324 303 283 311 330

1966 392 383 420 398 382 360 347 315 313 296 324 338

i 1967 404 401 411 364 348 349 327 316 293 282 289 347

: 1968 441 414 411 390 351 350 330 330 305 296 283 395

1969 410 464 411 428 375 373 338 338 297 291 319 358

1970 345 436 438 427 396 372 345 327 310 296 299 322

1971 356 392 413 389 374 363 336 314 320 287 292 295

1972 368 374 395 380 382 362 334 314 318 309 302 315

1973 352 441 39l 448 382 364 354 328 293 301 314 329
1974 359 386 359 400 396 382 345 327 299 337 309 313

1975 330 351 397 395 365 360 344 326 298 300 317 309
•i 1976 362 369 392 386 378 355 345 337 323 292 303 331

| 1977 390 411 383 406 378 369 356 336 312 287 307 317

1978 373 393 379 409 396 377 356 331 310 288 295 309

1979 385 389 412 423 384 386 330 299 294 290 331 289

1980 347 350 392 422 397 375 370 330 299 292 296 334

1981 366 391 370 388 395 349 353 332 306 304 306 344

1982 362 396 412 398 379 370 343 333 296 295 279 298
1983 312 359 357 375 359 352 330 328 301 279 285 319

i 1984 365 371 388 401 380 373 350 328 316 297 283 306
1

1985 373 391 376 373 365 366 330 308 296 280 307 318
1986 371 400 362 386 364 350 341 323 290 293 303 333
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Provisionally Revised Average Ozone Values at Huancayo

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1964 0 261

1965 259 260

1966 253 249

1967 256 260

1968 252 256

1069 258 258

1970 255 255

1971 261 265

1972 260 259

1973 258 253

1974 259 260

1975 260 260

1976 261 266

1977 247 251

1978 258 257

1979 253 252

1980 259 255

1981 258 258

1982 253 257

1983 256 258

1984 259 258

1985 252 252

1986 255 252

257 253 252 248 248 253 264 261 259 259

254 253 257 254 256 262 264 269 263 257

256 252 249 253 259 267 268 264 260 261

264 259 252 255 253 264 265 261 260 257

259 253 251 253 254 258 267 263 256 260

257 246 249 250 257 260 264 267 266 264

255 252 252 234 259 264 266 270 263 267

262 261 250 255 261 264 219 258 262 263

259 254 259 255 255 258 259 258 257 255

261 253 250 250 256 262 259 272 261 259

246 246 258 259 260 262 267 268 263 261

259 253 249 254 261 256 26t 261 263 262

262 257 258 262 260 265 270 267 265 259

249 246 248 248 247 255 258 260 257 259

257 251 256 259 259 262 262 263 264 255

252 254 256 258 261 262 259 258 263 259

252 246 247 252 252 259 265 261 260 258

256 258 253 259 256 263 266 269 267 261

259 25t 253 251 257 261 260 271 262 254

254 253 251 251 259 261 265 265 260 260

250 252 249 242 248 255 259 259 258 254

250 249 252 253 256 258 202 264 260 256

252 244 246 250 0 0 0 0 0 0

Provisionally

Year Jan

Revised Average Ozone Values at Kagoshima

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1961 0 0 0 307 299 283 274 267 26i) 260 267 278

1962 321 325 330 315 317 305 281 288 274 295 275 283

1963 320 318 336 338 320 314 296 275 264 289 252 268

1964 278 288 305 309 316 320 283 268 260 255 260 270

1965 301 300 331 324 333 317 283 290 28_ 284 264 273

1966 283 286 302 312 328 328 290 283 277 272 247 274

1967 272 283 308 306 315 304 276 273 278 264 256 294

1968 275 299 331 324 313 318 288 273 271 256 249 244

1969 265 268 307 308 315 315 288 281 267 269 262 260

1970 326 305 320 343 336 321 306 295 275 274 26] 269

1971 283 276 315 314 331 305 295 287 282 275 259 275

1972 279 3_12 319 328 320 3111 292 285 2911 273 272 269

1973 296 283 306 315 324 329 305 291 288 281 282 307

1974 291 297 318 320 329 323 297 296 285 263 258 250

]975 284 302 314 326 328 331 296 287 281 264 274 276

1976 285 299 304 319 32(} 315 3111 283 298 286 277 279

1977 281 294 304 324 321 321 293 287 274 271 261 254

1978 263 292 303 3(}8 313 298 286 276 269 263 260 322

1979 292 _22 323 332 341 328 297 290 291 273 268 275

1980 289 289 304 322 328 320 299 297 288 272 263 288

] 981 295 3112 327 339 329 311 301 29_ 285 273 267 281

] 982 300 306 318 344 329 336 309 301 291 279 271 264

1983 274 301 318 305 332 323 3110 290 278 271 276 292

1984 298 297 335 35t 330 310 297 291 288 282 260 252

1985 269 272 274 310 316 310 293 283 274 272 272 276

1986 294 318 319 318 315 311 280 284 277 281 257 260
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TOTAL COLUMN OZONE

Provisionally Revised Average Ozone Values at Leningrad

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1968 0 0 0 0 0 0 0 322 298 293 288 323

1969 363 471 433 440 397 386 345 319 316 304 301 343

]970 343 426 447 427 394 378 361 320 331 314 315 333

1971 366 428 434 432 389 372 346 327 3].9 309 319 330

1972 349 378 425 421 399 367 321 3II 303 316 305 343

1973 339 463 431 440 382 366 352 337 317 322 314 364

I974 356 384 350 416 405 368 333 332 312 320 324 369

1975 406 402 409 425 375 360 344 320 302 285 293 309

1976 393 351 429 449 401 384 344 326 306 299 289 338

1977 396 434 430 433 396 375 365 337 320 302 316 341
1978 362 394 393 427 388 368 355 334 32I 305 316 340

1979 374 396 441 443 388 363 362 320 305 292 292 328

]980 358 366 408 419 421 375 356 340 313 310 314 339

1981 336 404 404 421 380 354 335 330 300 320 303 333
1982 347 416 414 405 401 390 347 351 32! 302 286 300

1983 337 377 397 398 367 364 334 323 310 306 312 318

1984 360 372 400 404 374 376 355 322 315 318 296 315

1985 369 426 393 407 379 363 352 312 317 280 305 328

Provisionally Revised Average Ozone Values at Lerwick

Year Jan Feb Mar Apr May Jun JuI Aug Sep Oct Nov Dec

1957 330 430 395 375 400 363 344 322 308 278 280 300

1958 320 405 417 396 405 346 338 323 291 291 265 315

1959 330 341 411 418 368 352 326 303 283 281 300 305

1960 340 413 420 394 384 369 362 339 291 274 290 315

1961 350 390 376 414 388 369 355 328 294 300 274 280

1962 343 33I 426 408 385 366 354 339 298 267 274 305

1963 328 407 416 428 414 377 358 348 318 287 290 284

1964 297 341 387 434 398 377 364 344 308 292 270 301

1965 327 326 392 416 405 372 357 338 314 285 300 335

1966 360 402 442 429 428 360 355 332 312 308 287 305

1967 345 365 410 405 395 365 350 337 322 292 280 330

1968 375 380 422 415 424 378 358 343 315 290 280 330

1969 355 413 402 438 416 388 364 329 319 288 304 320

1970 340 430 459 445 403 371 365 335 337 302 300 315

1971 365 409 408 407 402 381 349 335 308 295 280 320

1972 350 4]5 436 412 405 390 338 331 297 308 287 315

1973 325 381 379 447 401 380 351 332 306 298 280 310

1974 345 350 379 391 391 368 362 340 334 320 297 315

1975 345 360 409 439 400 379 359 326 323 309 300 305
1976 320 365 402 385 406 361 341 317 305 309 279 310

1977 350 394 434 451 411 396 369 340 331 299 295 305

1978 335 382 410 429 405 373 365 332 298 306 301 3t5
1979 330 385 445 442 440 364 371 341 315 296 317 325

1980 325 345 396 403 395 385 365 331 317 327 285 305

1981 320 380 410 422 396 371 357 325 310 303 277 315

1982 360 412 415 411 410 383 345 354 330 305 285 275

1983 290 303 381 415 380 352 335 313 311 300 290 310

1984 346 351 402 397 396 377 348 314 312 320 300 310

1985 320 366 380 400 380 384 357 341 310 284 282 300

1986 325 351 397 420 381 360 341 333 308 318 325 0

327



TOTAL COLUMN OZONE

Provisionally Revised Average Ozone Values at MacQuarie Isle

Year Jan Feb Mar Apr May Jan Jul Aug Sep Oct Nov Dec

1903 320 300 294 320 326 340 334 354 380 370 384 358

1964 328 299 323 321 330 330 337 384 413 415 391 322

I965 295 297 302 290 3t6 347 300 350 402 423 360 325

1966 331 295 279 324 329 344 329 326 322 344 359 327

1967 310 304 295 302 318 319 334 345 408 414 385 334

1968 315 308 298 316 322 325 330 344 422 443 394 332

1969 314 283 305 331 338 354 358 366 381 381 339 325

1970 286 309 290 319 318 322 37/I 374 445 428 352 329

t971 285 275 296 300 318 340 339 325 393 397 346 318

1972 309 27I 287 314 327 343 363 382 421 410 364 356

1973 324 303 315 309 357 343 330 332 379 388 370 324

1974 294 277 277 270 3t3 313 338 391 300 393 356 329

1975 305 310 282 3(17 358 354 358 385 399 37(1 339 331

1976 304 289 282 294 347 348 350 325 337 4(12 360 326

1977 308 297 281 314 333 369 380 358 372 410 368 324

i978 312 280 282 279 327 330 368 383 379 412 394 336

1979 350 320 308 312 316 320 359 379 405 425 389 367

1980 336 320 326 3114 337 339 353 300 405 406 389 339

1981 335 3]8 299 328 318 319 335 374 432 435 370 325

1982 320 303 293 303 327 316 329 371 378 406 359 327

1983 311 284 309 319 332 332 340 345 300 401 352 315

1984 281 285 270 307 317 368 364 361 390 403 389 336

1985 316 311 304 308 306 328 314 327 360 377 366 315

1986 294 287 292 316 324 369 357 383 411 4(13 390 331

Provisionally Revised Average Ozone Values at Mauna Loa

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1964 241 258 261 276 283 273 271 263 26I 252 253 250

1965 259 278 278 286 284 280 269 267 265 262 246 243

1966 242 24t 254 277 270 275 272 274 267 259 257 248

1967 260 270 274 300 289 278 267 274 268 262 267 263

1968 259 252 277 294 285 285 280 271 269 257 239 239

1969 240 252 203 278 287 285 277 278 273 267 263 257

1970 244 248 284 295 296 289 2811 280 273 260 256 247

1971 243 255 263 284 288 284 281 281 274 266 265 272

I972 263 267 271 297 302 281 275 266 272 204 255 241

1973 240 241 275 278 289 283 280 274 269 266 268 264

1974 262 287 292 296 306 296 285 275 270 269 260 240

]973 240 259 267 279 289 286 286 278 274 270 262 266

1976 265 267 292 290 296 284 274 275 271 266 260 251

1977 245 251 276 296 298 298 279 272 259 251 238 233

1978 238 23_ 256 283 286 27(t 275 269 265 256 259 259

1979 200 260 282 300 298 287 279 274 269 257 257 241

1980 239 236 259 267 287 275 277 276 267 267 257 253

1981 244 256 274 296 289 281 277 277 278 271 259 258

1982 263 2_7 295 297 292 2811 27t 268 261 249 244 237

1983 22_ 230 248 280 279 282 271 269 263 261 255 254

1984 249 272 263 299 2911 278 278 274 27(} 258 243 246

1985 230 234 252 276 284 2811 267 266 266 256 260 250

1986 242 201 270 292 282 278 2_7 258 259 260 247 249
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TOTAL COLUMN OZONE

Provisionally Revised Average Ozone Values at Nashville

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

[963 342 348 360 351 353 344 331 323 306 285 294 317

1964 324 360 343 332 335 331 333 312 300 309 293 309

1965 322 330 366 330 337 333 327 319 291 295 297 303

1966 337 356 365 370 363 352 331 327 314 297 301 312

1967 320 363 326 323 358 332 338 322 313 288 297 297

1968 336 380 366 342 363 339 342 334 314 300 292 309

1969 320 348 372 361 364 339 335 335 316 291 317 319

1970 342 357 393 361 361 343 359 349 309 311 316 292

1971 328 311 354 405 365 345 332 315 306 289 279 277

1972 305 339 355 344 365 345 330 331 304 302 298 293

1973 324 347 326 36I 358 331 330 326 302 302 299 312

1974 316 348 345 353 344 356 339 326 304 310 291 308

1975 306 325 341 339 344 336 336 318 297 285 291 299

1976 324 309 328 319 339 337 325 312 303 302 306 302

1977 355 359 319 357 352 334 334 313 302 302 277 294

1978 314 329 322 331 351 331 316 312 293 286 274 286

1979 335 338 371 374 368 331 325 314 305 302 287 301

I980 316 360 343 372 355 335 320 313 303 306 286 313

1981 323 344 346 329 356 322 324 321 303 287 288 318

1982 318 339 357 365 347 338 325 321 315 289 273 293

1983 315 324 343 366 343 336 315 312 302 294 280 309
1984 325 352 371 374 349 328 328 314 296 280 296 268

1985 321 317 300 327 340 326 325 311 295 280 285 315

1986 332 33t 337 340 339 320 314 310 287 295 304 302

Provisionally Revised Average Ozone Values at Quetta

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1969 0 0 0 0 0 0 0 288 286 289 281 285

1970 300 295 293 305 289 297 296 293 291 273 271 279

1971 285 287 290 295 298 283 270 279 289 280 281 282

1972 280 317 311 313 310 295 276 287 293 289 277 286

1973 291 308 314 289 287 283 281 284 278 282 280 289

1974 314 319 310 299 300 297 290 292 285 281 281 285

1975 296 299 316 313 286 292 286 280 267 264 271 260

1976 286 298 318 318 292 294 278 276 272 265 266 285

1977 304 297 308 320 312 297 283 279 276 267 277 283

1978 287 298 322 305 294 283 276 273 278 271 274 276

1979 308 309 318 300 310 294 291 290 288 273 270 278

1980 280 292 314 295 303 292 288 289 279 275 269 275

1981 290 289 303 304 292 295 289 284 278 276 280 289

1982 299 333 324 309 308 299 30I 294 291 280 269 279

1983 280 289 283 304 297 288 289 285 274 265 264 276
1984 303 325 303 300 296 290 289 285 285 268 257 273

1985 267 258 263 273 289 282 281 280 276 276 281 279

1986 294 299 319 305 300 286 285 282 287 289 289 299
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TOTAL COLUMN OZONE

Provisionally Revised Average Ozone Values at Reykjavik

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1975 0 0 0 0 0 0 0 0

I976 309 343 384 400 380 345 310 300

1977 348 375 390 385 375 356 340 330
1978 316 361 435 392 406 368 335 307

1979 340 408 457 432 423 360 350 341
1980 330 373 411 430 413 376 363 336

1981 320 409 462 392 394 375 352 333

1982 330 450 417 424 410 382 359 347
I983 285 301 406 397 375 364 342 328

1984 326 346 404 423 390 372 348 322

1985 333 367 380 384 382 368 360 334

1986 290 314 414 396 392 357 341 325

O 0 0 290

290 286 250 270
311 301 324 336

293 293 295 320

330 293 313 350

320 292 294 300

297 288 278 320

343 307 299 260
298 292 286 298

306 298 298 315

317 279 286 270

295 305 0 0

Provisionally Revised Average Ozone Values at Rome

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

I957 333 322 350 362 366 332 318 304
1958 358 365 405 410 352 351 325 307

I959 365 368 365 376 377 356 313 317

1960 352 390 401 414 373 345 333 314

1961 359 345 345 370 373 358 329 315

1962 354 379 409 384 357 347 320 296

1963 371 423 392 401 391 355 323 309

1964 323 344 354 378 364 327 319 309

1965 345 409 389 406 387 347 324 318

1966 369 338 413 383 369 349 343 315

I967 361 352 358 365 342 350 319 307

I968 387 381 400 374 350 348 327 331

1969 350 386 384 385 345 343 338 329

1970 361 385 408 417 392 350 332 318

1971 348 375 413 382 375 358 339 312

1972 358 368 384 381 375 353 346 327

1973 350 406 384 401 349 357 335 330

1974 354 388 368 409 376 350 325 315

1975 321 353 384 374 365 361 325 326

1976 334 361 372 383 356 36l 334 327

1977 362 380 361 382 3_) 358 338 330

1978 355 349 365 400 382 354 337 328

t979 366 382 385 413 370 362 335 329

1980 347 336 377 399 390 359 341 317

1981 363 383 373 392 378 356 343 325

1982 347 389 394 381 370 354 326 325

1983 310 362 359 361 342 352 321 325

1984 359 398 407 396 379 359 327 333

1985 342 345 369 352 36(] 334 322 321

1986 353 373 379 386 366 350 333 309

296 286 297 325

302 293 310 327

314 305 308 345

320 307 296 346

303 291 309 319

297 279 303 329

295 291 291 305

301 305 287 332

309 291 309 322

311 291 320 326

299 281 282 330

318 299 298 346

310 289 312 365

307 299 297 320

323 294 313 318

323 311 304 331

308 302 295 339

303 320 309 311

296 299 305 308

314 289 301 324

322 298 297 302

305 290 298 288

317 299 304 319

309 3t7 299 316

310 297 309 337

306 306 294 321

306 293 292 321

319 294 292 317

303 292 309 324

300 294 304 319
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TOTAL COLUMN OZONE

Average ozone values at Samoa
r

Year Jan Feb Mar Apr May Jun Ju] Aug Sep Oct Nov Dec

1976 264 262 261 255 261 267 263 268 264 276 269 263

1977 255 253 251 252 252 252 253 252 245 252 261 262

1978 256 260 260 257 259 265 267 263 269 266 261 264

1979 255 255 253 257 259 262 260 260 267 269 260 263

1980 259 254 244 243 247 245 241 255 258 261 258 256

1981 250 250 255 250 258 259 259 253 261 260 264 260

1982 252 252 253 250 245 245 244 246 253 253 257 264

1983 256 250 251 255 252 257 256 256 258 264 264 253

1984 246 246 243 245 250 254 252 252 256 258 262 264

1985 255 254 249 251 253 235 245 251 260 266 264 259

1986 246 247 249 246 250 253 253 254 261 269 250 246

Provisionally Revised Average Ozone Values at Sapporo

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1958 410 427 467 420 408 376 324 309 292 319 326 390

1959 446 427 422 413 391 382 345 312 314 316 350 384

1960 441 460 441 414 397 376 331 288 299 288 325 367

1961 415 435 441 410 379 369 331 320 311 289 325 391

1962 429 449 454 390 388 342 3II 287 290 296 323 371

1963 453 445 441 398 391 350 333 315 330 297 324 365

1964 398 442 436 383 390 366 325 291 312 315 339 366

1965 407 440 456 425 397 368 339 299 303 307 328 391

1966 448 433 447 429 401 386 347 297 309 325 336 410

1967 431 432 427 406 371 370 325 306 297 312 333 404

1968 435 471 463 401 406 374 344 315 312 318 325 354

1969 410 427 440 403 412 365 332 316 310 325 335 402

1970 431 449 496 426 390 374 330 310 301 317 338 392

1971 404 459 438 410 396 381 333 310 307 329 336 372

1972 381 416 415 406 386 370 327 305 306 312 351 378

1973 400 438 472 407 399 378 320 301 315 326 361 403

1974 437 414 437 405 408 356 338 302 295 313 347 371

1975 410 449 428 431 396 370 327 300 303 321 337 383

1976 408 411 406 420 376 349 317 3t5 301 306 335 382

1977 429 469 436 421 398 373 318 311 303 301 316 368

1978 413 444 438 434 390 344 305 298 309 313 327 386

1979 422 418 455 429 426 367 347 315 314 298 328 365

1980 423 464 437 430 401 370 349 330 310 313 338 403

1981 433 445 442 418 392 389 332 318 321 320 354 387

1982 442 466 439 419 403 380 357 304 312 317 335 355

1983 387 428 408 382 391 386 344 298 305 330 337 400

1984 438 463 470 428 408 364 323 297 312 317 332 380

1985 415 410 408 387 392 381 323 291 315 317 349 393

1986 437 456 419 421 397 364 335 296 304 325 355 362
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TOTAL COLUMN OZONE

Provisionally Revised Average Ozone Values at Srinigar

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1064 0 342 313 297 320 304 208 281 279 260 271 281

1965 301 322 325 304 306 299 287 283 280 270 272 276

1066 303 290 293 304 302 298 281 270 269 292 291 298

1067 307 290 317 321 313 294 284 286 275 281 290 303

I068 334 335 33t 316 315 303 298 206 285 276 275 299

1069 306 296 288 309 297 200 280 27-1 284 288 287 291

1070 306 323 321 304 311 302 297 284 281 266 275 286

1071 301 307 207 292 302 290 292 285 283 272 276 280

1972 296 322 315 323 3t4 297 206 277 284 288 268 286

1973 310 302 305 291 30t 290 284 278 276 276 285 295

1074 318 318 308 296 308 299 291 283 280 276 278 291

1975 306 317 319 326 320 308 296 283 276 272 285 285

1976 276 302 305 298 297 286 283 281 276 273 270 293

1977 314 310 300 313 322 310 286 281 283 277 269 298

1978 309 322 333 306 287 284 278 277 282 276 278 292

1979 325 363 345 296 315 297 287 280 289 277 269 305

1980 308 318 338 298 302 295 284 285 279 276 278 300

1981 309 313 337 316 299 301 286 279 278 275 281 311

1982 291 344 318 315 323 302 293 278 288 281 275 288

1983 292 303 311 316 309 306 295 280 276 277 282 296
1984 329 333 308 316 302 286 278 272 278 276 278 291

1985 288 287 285 291 302 286 275 269 271 269 284 277

1986 311 326 340 312 312 0 0 0 0 0 0 0

Provisionally Revised Average Ozone Values at Tateno

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1957 0 0 0 0 0 0 300 281 285 271 273 309

1958 320 335 385 357 351 339 308 204 270 281 274 309

1959 324 338 356 353 372 364 316 305 293 282 281 307

1960 343 376 389 378 371 347 321 297 290 275 292 290

1961 313 369 355 359 330 330 302 294 280 274 294 330

1962 378 370 399 386 362 341 322 295 287 285 288 339

I963 387 401 408 367 360 330 310 208 295 267 287 301

I964 325 350 373 344 359 347 307 282 270 274 287 300

1965 334 352 382 372 357 340 315 300 285 284 276 311

1966 345 346 358 348 356 350 316 298 287 290 276 318

1967 340 338 348 339 341 333 306 290 276 272 273 323

1968 337 378 397 360 367 353 330 302 29I 285 276 291

1969 311 313 368 353 35I 339 323 299 289 292 285 300

1970 352 349 376 370 355 341 323 301 289 283 282 310
1971 342 348 359 342 353 334 313 203 288 289 280 304

1972 315 349 369 358 340 338 306 294 297 278 293 306

1073 332 33t 364 329 355 358 310 290 291 286 299 335

1974 355 353 375 345 344 338 317 291 292 275 279 281

1975 326 365 365 363 353 345 312 295 288 286 286 306

1976 309 331 327 337 337 322 309 295 288 280 279 303

1977 32t 363 352 359 366 343 318 297 283 280 268 296

1978 317 350 371 358 340 313 301 290 286 280 283 328

1979 344 359 372 358 366 333 323 304 295 269 282 300
1980 326 346 349 347 350 327 318 304 285 270 287 332

1981 350 35I 361 372 347 347 320 306 296 282 291 317

1982 354 368 365 379 346 350 333 307 298 281 280 289

1983 315 348 349 322 350 345 327 299 294 284 292 324

1984 350 368 397 373 362 335 306 295 292 279 277 292

1985 309 330 302 339 338 333 306 287 283 279 289 305

1986 34l 387 374 363 349 341 310 291 286 295 280 297
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TOTAL COLUMN OZONE

Provisionally Revised Average Ozone Values at Toronto

Year ]an Feb Mar Apt May Jun Jul Aug Sep Oct Nov Dec

1960 393 428 477 4(11 390 369 351 328 313 310 320 371

1961 402 386 386 445 404 353 344 329 296 311 310 340

1962 372 429 453 437 369 360 354 334 328 315 315 365

1963 418 404 411 413 400 375 367 357 320 307 325 369

1964 372 399 429 392 365 354 343 333 309 317 308 341

1965 378 383 415 409 369 357 351 336 306 311 322 351

1966 386 417 424 422 421 368 353 340 340 330 319 358

1967 362 415 395 373 399 345 346 340 322 295 323 319

1968 381 430 397 371 403 359 346 328 309 305 323 364

1969 350 402 439 402 394 364 337 330 319 316 326 365

1970 416 417 418 394 365 353 350 331 312 308 327 333

1971 417 392 430 420 382 353 351 333 307 279 312 325

1972 356 406 426 392 430 372 348 333 303 322 339 333

1973 356 394 381 411 400 353 353 336 313 307 318 338
1974 358 417 414 402 388 376 347 340 321 316 331 363

1975 368 403 411 409 390 366 347 337 329 306 320 351

1976 382 368 386 384 402 358 353 335 330 324 350 350

1977 452 420 410 402 387 381 359 328 321 311 314 360

1978 366 394 403 383 375 360 335 322 308 310 295 325

1979 380 413 402 423 389 367 352 337 317 322 312 334

I980 361 432 406 412 373 377 340 327 323 317 319 346

1981 378 399 429 395 402 370 342 340 324 323 324 336

1982 379 391 408 412 374 378 344 336 326 291 305 325

1983 361 367 386 382 376 354 327 325 313 300 315 345

1984 378 385 429 416 402 350 338 329 316 293 321 300

1985 399 399 362 377 36l 359 342 329 304 288 311 360

Provisionally Revised Average Ozone Values at Uccle

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1971 0 412 431 424 416 406 375 352 333 302 324 320

1972 376 397 418 414 411 385 355 344 338 315 306 321
1973 361 410 388 442 407 373 376 345 315 319 319 311

1974 374 386 378 404 395 384 354 335 314 348 335 301
1975 325 350 405 406 387 372 344 328 314 300 310 291

1976 357 354 376 392 372 354 341 340 327 291 289 335

1977 368 415 399 411 403 38t 356 346 312 285 313 336
1978 373 387 378 419 395 380 369 349 291 291 290 310

1979 359 392 327 450 403 377 356 328 301 297 300 334

1980 340 353 393 415 416 386 363 324 320 307 297 327

1981 350 380 391 405 392 365 359 326 314 320 280 344

1982 370 402 433 393 389 376 351 348 302 301 275 288

1983 300 351 355 396 396 352 336 332 301 286 268 304

1984 362 350 403 391 421 380 350 336 319 308 289 312

1985 364 355 386 371 375 383 338 328 293 284 316 331

1986 378 396 388 427 371 349 343 337 286 292 307 316
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TOTAL COLUMN OZONE

Provisionally Revised Average Ozone Values at Wallops Is.

Year Jan Feb Mar Apt May Jun Jul Aug Sep Oct Nov Dec

1970 338 365 406 366 354 353 333 320 300 293 301 300

197t 328 325 360 383 358 341 319 315 302 277 293 293

1972 322 358 369 357 383 358 331 315 309 307 304 293

1973 321 360 341 363 366 329 332 324 302 298 296 308

1974 309 359 366 361 351 343 336 312 295 306 282 307

1975 306 323 349 368 353 343 328 319 301 289 293 307

1976 338 313 329 344 352 338 332 323 311 309 311 313

1977 395 386 345 371 387 363 336 319 309 304 287 308

1978 330 338 341 338 354 331 323 308 300 294 277 295

1979 350 355 370 374 347 341 323 314 290 295 284 305

1980 317 373 353 370 363 358 330 322 303 304 286 321

1981 341 350 375 351 370 324 328 321 307 296 305 322

1982 346 332 361 378 377 341 337 328 310 287 272 283

1983 324 329 353 370 350 340 327 315 303 299 286 290

1984 337 350 367 369 361 343 327 318 302 281 291 277

1985 328 323 316 333 336 335 325 315 304 282 288 321

1986 347 349 348 386 356 331 325 316 295 295 308 295

A°

N.B.

(ii) Latitudinal band averages prepared from provisionally revised data (Bojkov, private
communication, 1987)

60°-80 ° North

530-64 ° North

40°-52 ° North

30°-39 ° North

and M-83 regional averages (USSR), prepared by Bojkov (1988a)

European part
South Central Asia

Siberia

Far Eastern Asia

The latitudinal band averages are made up from the provisionally revised Dobson instru-

ment records only, with the exception of the band between 30 ° and 39°N, which contains
one M-83 filter instrument record.
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TOTAL COLUMN OZONE

Average Monthly Ozone Values for 60°N-80°N, Derived From the Provisionally
Revised Data Sets; Dobson Only

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1957 346 456 41I 397 403 377 333 318 309 297 289 310

1958 356 454 464 438 411 366 346 324 305 303 292 345

1959 376 383 441 448 400 371 332 318 299 292 300 289

1960 373 445 420 416 391 367 343 319 293 273 276 303
1961 351 392 443 425 390 361 338 318 287 288 292 296

1962 349 357 420 407 390 362 338 319 299 277 274 309

1963 350 430 444 434 406 371 347 324 314 294 295 295

1964 305 344 415 448 402 367 349 332 303 277 286 314

1965 351 372 415 425 408 361 343 323 305 292 292 355

1966 385 417 459 451 409 364 353 328 305 307 305 323

1967 358 394 417 409 392 360 346 320 302 299 295 322

1968 384 403 431 433 423 373 353 333 307 300 307 341
1969 368 422 443 444 414 388 354 322 311 301 313 336

1970 369 452 454 452 416 368 355 330 325 309 315 332

1971 377 424 442 431 396 367 345 323 310 311 312 333

1972 361 407 444 427 401 372 337 320 310 313 315 346

1973 349 435 438 449 391 362 339 318 311 315 303 338

1974 355 385 431 429 399 368 340 318 315 320 323 352

1975 381 393 438 435 390 362 334 317 303 295 305 316

1976 343 372 418 414 395 358 328 304 302 296 290 320

1977 371 407 444 432 394 370 347 326 308 308 325 338
1978 348 385 433 427 397 371 343 321 300 303 306 325

1979 358 410 457 443 409 368 349 327 313 302 318 346

1980 356 378 431 428 403 373 353 327 313 310 314 323

1981 333 405 434 427 392 367 342 321 303 302 301 340

1982 361 427 431 439 410 379 346 335 313 303 302 296

1983 322 344 409 413 392 357 334 315 305 297 301 322
1984 361 370 421 415 396 372 348 315 309 305 308 318

1985 355 401 430 426 393 371 350 329 312 290 303 304

1986 337 355 417 444 396 367 347 330 306 313 324 337
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TOTAL COLUMN OZONE

Average Monthly Ozone Values for 53°N-64°N, Derived From the Provisionally
Revised Data Sets; Dobson Only

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1957 346 456 411 397 403 377 342 326 310 297 291 309

1958 345 426 442 420 403 365 350 330 309 305 299 350

1959 375 389 432 433 395 373 341 325 302 299 315 320

1960 371 448 424 404 394 378 360 350 307 295 309 326

1961 357 391 403 417 390 368 353 328 307 305 297 300

1962 358 389 423 409 381 366 345 326 305 281 281 323

1963 361 419 431 420 415 381 354 338 310 303 302 307

1964 331 370 417 426 400 371 349 335 319 295 297 326
1965 360 382 414 416 400 363 347 331 316 300 297 365

1966 392 418 438 427 410 369 356 332 313 317 313 339

1967 365 400 427 401 387 359 340 324 298 306 305 321

1968 397 403 422 416 400 369 353 335 307 305 314 351

1969 376 413 433 428 407 382 360 328 317 305 311 342
1970 385 444 449 438 406 361 353 331 329 313 316 337

1971 386 416 426 417 388 371 346 321 313 305 311 337

1972 368 410 430 414 395 363 343 321 320 314 324 355

1973 362 426 406 424 384 369 347 327 312 310 310 330

1974 363 401 427 413 396 364 346 329 313 311 328 351

1975 384 399 423 425 393 367 337 325 306 307 308 324

1976 344 382 414 399 389 363 334 314 301 301 298 327
1977 373 402 432 427 397 376 363 342 323 309 328 342

1978 353 389 428 420 398 371 351 330 309 304 305 326

1979 357 416 436 435 408 370 357 335 315 302 320 347

1980 362 388 423 412 402 379 362 335 319 310 317 325
1981 338 401 426 425 394 376 349 326 302 307 307 345

1982 374 428 423 431 409 382 356 347 320 304 306 308

1983 329 354 398 398 384 360 337 319 311 301 308 332
1984 361 379 410 405 394 373 348 318 316 310 317 330

1985 357 398 404 404 384 366 349 330 315 297 311 312

1986 356 379 415 414 381 365 348 328 312 312 327 329
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TOTAL COLUMN OZONE

Average
Revised

Monthly Ozone Values for 40°N-52°N Derived From the Provisionally
Data Sets; Dobson Only

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1957 344 348 350 358 374 345 320 309 295 277 290 323

1958 356 380 406 407 375 361 337 315 294 296 313 345

1959 382 392 403 396 378 353 333 311 306 300 318 341
1960 372 414 429 402 379 360 345 320 309 304 312 353

1961 386 370 374 399 383 358 338 323 301 298 311 330

1962 377 395 430 393 371 350 330 309 300 283 306 333

1963 388 423 406 397 388 365 336 324 301 290 306 324

1964 345 378 393 395 375 347 329 320 303 299 295 335

1965 361 395 408 398 380 353 340 323 311 294 310 342

1966 380 390 411 404 391 364 347 328 315 310 321 343

1967 373 390 385 379 366 356 331 321 302 288 299 337
1968 385 406 405 386 374 357 339 331 312 299 302 354

1969 359 412 408 399 377 368 341 332 309 301 314 353

1970 372 416 430 420 386 366 343 330 313 309 313 335

1971 37I 392 41I 393 378 365 34I 320 318 292 306 323

1972 362 385 398 390 384 364 339 321 316 310 316 330

1973 353 396 389 422 380 361 347 326 308 306 309 330

1974 364 393 387 401 384 365 339 326 308 322 315 321
1975 342 372 398 398 379 362 335 325 307 300 310 318

1976 355 367 381 383 372 352 335 329 316 300 310 335

1977 390 403 392 399 385 369 346 329 310 294 304 329

1978 363 382 380 399 382 362 340 323 301 292 293 314

1979 371 393 397 419 389 360 342 323 305 301 310 326

1980 355 379 395 405 393 367 346 322 308 302 305 322

1981 358 385 390 390 387 357 338 323 309 309 307 340
1982 370 401 408 397 380 367 341 328 303 297 294 314

1983 326 362 368 381 369 350 327 318 301 292 293 331

1984 366 381 408 395 386 360 334 322 314 301 299 316

1985 367 372 374 368 360 356 327 314 299 291 318 333

1986 372 389 378 390 363 343 333 317 300 298 309 323
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TOTAL COLUMN OZONE

Average Monthly Ozone Values for 30°N-39°N, Derived From the Provisionally
Revised Data Sets

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1957 317 309 320 335 342 319 298 291 291 286 289 299

1958 318 329 360 357 347 342 319 309 301 289 291 312

1959 316 328 338 343 348 335 310 303 295 289 286 306

1960 322 332 351 365 342 326 310 296 300 286 285 306

1961 319 333 334 337 330 324 305 297 291 284 296 309

1962 338 349 358 351 341 321 300 287 283 283 286 307

1963 338 355 350 354 349 327 312 298 291 286 282 293

1964 311 333 334 335 345 330 315 301 293 287 284 300
1965 323 341 356 351 348 334 312 308 299 297 290 301

1966 326 323 348 349 352 343 319 307 303 293 291 311

1967 325 333 335 337 339 329 311 305 297 288 289 313

1968 335 356 367 345 345 334 322 313 302 293 289 304

1969 315 325 343 346 340 334 317 310 305 299 299 316

1970 338 344 361 357 350 337 327 315 302 292 292 301

1971 322 329 349 349 344 326 311 304 301 292 291 298
1972 317 343 352 349 349 329 315 306 303 297 291 305

1973 328 337 344 339 338 325 313 305 300 297 299 318

1974 323 345 350 352 343 333 321 309 298 297 286 299

1975 312 334 347 340 343 337 317 307 295 287 290 301

1976 317 322 332 335 334 325 313 304 299 296 297 310

1977 341 347 333 351 354 335 317 308 300 295 285 301
1978 314 327 340 334 334 318 309 303 296 289 290 305

1979 336 349 358 348 352 328 312 308 303 291 287 307

1980 323 339 346 343 344 329 315 310 300 297 293 309

1981 326 335 356 344 342 325 317 309 300 292 294 310

1982 330 356 357 354 346 332 324 313 308 294 288 294

1983 308 324 337 340 337 328 316 306 297 291 289 308

1984 332 345 352 355 343 324 314 305 301 288 287 290
1985 300 306 306 322 331 318 307 303 295 288 296 307

1986 326 340 349 347 343 326 314 306 297 298 296 298
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TOTAL COLUMN OZONE

M-83 Average Monthly Ozone Measurements for the European Part of the USSR

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1972 339 368 414 414 397 367 317 315 318 323 310 336
1973 339 435 440 434 388 379 362 337 320 314 317 338

1974 359 384 364 411 402 367 344 335 315 313 311 342

1975 367 404 406 402 373 356 335 320 299 289 296 301

1976 370 371 428 423 396 378 345 332 315 302 297 343

1977 386 442 432 432 401 388 380 350 331 308 331 325

1978 367 399 399 430 401 377 363 343 331 306 302 334

1979 378 395 417 433 375 364 366 322 305 304 295 340

1980 370 378 416 423 408 377 356 343 316 305 306 334
1981 364 402 398 420 395 356 336 331 302 310 309 332

1982 357 417 411 396 388 384 353 342 308 299 284 299

1983 333 377 383 383 357 364 342 331 306 294 301 319

1984 361 368 399 393 372 368 349 333 315 312 293 319

1985 351 426 391 391 369 355 346 307 316 290 300 324

M-83 Average Monthly Ozone Measurements for the South Central Asian Part of the USSR

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1972 360 358 365 345 350 324 307 304 298 295 290 329

1973 349 346 352 327 345 313 313 301 305 305 321 344

1974 362 392 353 353 354 339 325 301 299 283 309 348

1975 359 387 378 362 352 321 303 283 293 296 315 323

1976 343 375 359 332 319 318 299 291 302 315 315 347
1977 388 384 361 357 358 325 313 307 304 312 306 333

1978 351 371 385 336 330 315 300 298 294 294 300 315

1979 368 379 383 333 355 323 303 301 302 292 288 325

1980 369 372 372 336 340 334 307 306 302 299 306 316

1981 349 366 378 355 328 318 309 302 295 294 296 318
1982 354 388 379 349 338 320 310 301 315 302 305 319

1983 324 338 367 352 328 319 302 287 294 288 299 322

1984 361 397 365 366 357 332 306 281 297 287 298 334

1985 325 335 350 317 344 320 298 311 297 302 312 323
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M-83 Average Monthly Ozone Measurements for the Siberian Part of the USSR

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1972 359 377 422 423 406 376 338 327 322 332 341 349

1973 384 378 430 390 372 347 340 330 352 338 348 352

1974 373 392 369 421 391 368 333 329 325 308 322 341

1975 398 446 432 432 402 359 347 342 316 320 320 332

1976 365 394 396 413 387 364 349 317 325 329 304 321
1977 390 429 437 412 399 360 343 346 320 328 315 336

1978 382 400 389 414 401 353 344 333 321 312 319 327

1979 389 387 429 422 383 377 340 322 311 311 291 347

1980 394 378 435 406 382 379 349 339 321 311 303 337

1981 366 431 420 413 397 359 341 324 309 299 314 304

1982 415 436 435 382 388 361 348 334 309 299 291 295

1983 350 397 414 379 396 350 336 331 326 309 309 312

1984 381 374 428 438 401 369 340 311 332 326 299 322
I985 365 406 388 397 375 360 343 316 307 308 306 339

M-83 Average Monthly Ozone Measurements for the Far Eastern Part of the USSR

Year Jan Feb Mar Apt May Jun JuI Aug Sep Oct Nov Dec

1972 407 440 449 427 398 385 336 321 322 333 359 386

1973 403 445 478 421 411 383 317 314 339 345 371 412

1974 460 450 483 434 416 365 347 311 314 331 363 398

1975 423 457 441 451 413 382 344 318 322 336 366 405

1976 420 430 440 452 394 373 332 336 315 336 371 403
1977 445 484 477 454 414 390 340 331 325 338 343 371

1978 430 456 455 452 414 375 333 323 329 335 343 404

1979 433 444 466 433 424 384 352 322 327 326 362 371

1980 444 484 470 460 414 372 346 324 325 341 351 389

1981 437 471 463 439 402 388 335 322 336 339 371 399

1982 456 479 464 439 413 388 356 307 326 335 343 371

1983 407 455 436 403 393 388 352 303 306 337 351 411
1984 439 464 469 435 402 372 327 303 317 334 354 386

1985 419 424 433 410 396 375 330 301 318 328 366 404

1986 454 473 435 437 412 378 348 307 316 337 369 376
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B. (i) Coefficients from individual station analyses

Part Data Used Trend Starts
QBO

Effects Allowed For

Solar Cycle Nuclear Effect

(a) 1965-1986 1970 yes yes n/a

(b) 1965-1986 1976 yes yes n/a

(c) 1957-1986 1970 yes yes no

(d) 1957-1986 1976 yes yes no

(e) 1957-1986 1970 yes yes yes

(_ 1957-I986 1976 yes yes yes

For example, part (a) contains the results of analyses that used data from January 1965 to December 1986 and a model
that allows for the quasi-biennial oscillation and the solar cycle, and that posits a trend that starts in January 1970.

Notes:

(1) If a station does not have a complete record for the whole time period, as much as

possible is used--e.g., for Bismarck, whose record starts in January 1963, the last four

analyses are performed on the complete Bismarck data set (1/63-12/86). The estimate of
the nuclear bomb test parameter should be treated very carefully because the maximum

predicted effect occurred as the ozone observations started.

(2) No data prior to January 1957 were analysed.

(3) The units of the QBO and solar cycle parameters are Dobson Unit per re.s-l, and

Dobson Units per 100 sunspots, respectively. To find the magnitude of these effects, see

Figures 4.10 and 4.11.

(4) The nuclear bomb test parameter shows that the photochemical model prediction and

the analysis agree when it has a value of -1. If it has a value of -0.5, the magnitude of the

effect calculated from the data is one half that predicted by the LLNL model.

(5) The trend coefficients are all given in Dobson Units per year.

(6) The provisionally revised data (Bojkov, private communication, 1987) are used.
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(a) Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Reykjavik Lerwick Leningrad

Monthly calculation:

January -2.26_+ 1.66 -2.37_+0.86 - 1.14 _ 1.30
February - 3.24 _+3.04 - 3.06 -+1.53 - 2.21 -+2.10
March -0.54_+ 1.72 - 1.79_+0.98 -2.19 _+1.51
April + 0.19 _+1.51 - 1.19 _+0.91 - 2.91 _+0.93

May -0.22- + 1.57 - 1.91 +0.75 - 1.37 +0.85
June + 1.59-+0.91 -0.49-+0.59 -0.38 +-0.62
July +2.64+ 1.11 -0.79-+0.54 +0.35 _+0.74

August +1.88_+0.94 -0.43-+0.51 +0.10 _+0.65
September + 0.77_+ 1.31 - 0.53_+ 0.63 - 0.07 _+0.56
October +0.68_+0.69 +0.68_+0.68 -0.60 _+0.76
November + 1.18 _+1.69 + 0.75 _+0.69 - 0.62 _+0.74

December -2.28_+2.04 - 1.52-+0.58 -2.33 _+1.07

Average + 0.03 - 1.05 - 1.11

QBO - 0.30 -+0.11 - 0.28 ___0.080 - 0.086 +-0.096
Solar +9.69_+2.88 +4.42_+2.12 + 1.30 _+2.61

Yearly calculation:
Ramp +0.86_+0.53 -0.80_+0.30 -0.66 _+0.38

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for t976 through 1986. Model: QS76

Station: Churchill Edmonton Goose

Monthly calculation:

January - 1.54_+ 1.07 -4.11 _+1.42 -0.71 _+1.51
February -2.12_+ 1.14 -0.47_+0.98 - 1.14-+ 1.01
March - 1.42 _+1.02 - 2.35 _+0.97 - 0.80 _+0.96

April - 1.55-+0.94 -0.66_+0.86 - 1.87_+ 1.13
May - 0.82 _+0.82 - 1.18 _ 0.65 - 1.22 _+0.99

June +0.20_+0.80 -0.03_+0.69 +0.13_+0.54
July - 0.81 + 0.51 + 0.17_+ 0.51 - 0.22 _+0.56
August - 1.30 _+0.78 + 0.26 _+0.64 - 0.29 _+0.53
September - 0.25 _+0.71 + 1.01 _+0.76 - 0.82 _+0.58

October - 2.06 -+0.60 - 1.01 _+0.59 + 0.03 _+0.41
November + 0.08 _+0.83 + 0.30 -+0.91 + 0.99 -+0.67
December -2.70_+ 1.05 -2.13-+ 1.49 +0.57-+ 1.11

Average - 1.19 - 0.85 - 0.45

QBO - 0.27-+ 0.080 - 0.22 -+0.080 - 0.18 -+0.073
Solar +4.33-+2.10 +2.70_+2.06 +5.12-+2.01

Yearly calculation:
Ramp -1.13_+0.27 -0.46_+0.28 -0.I7-+0.27
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Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Belsk Brackne]] Ucc]e

Mo,thly calculation:

January -0.62_ + 1.23 - 1.24+ 1.14 -0.45 +- 1.27
February - 1.24-+ 1.35 -2.97 +-1.16 - 1.63 _+1.47
March - 2.36 + 1.14 - 1.91 _+1.16 - 0.81 + 1.52

April - 1.22-+ 0.91 - 0.75 + 1.19 - 1.86 +- 1.15
May -0.24_+0.74 -0.10+0.62 - 1.19+0.90
June - 0.21 _+0.65 - 1.21 _+0.63 - 1.52 _+0.84

July +0.18_+0.55 -1.11-+0.49 -1.67+-0.71
August - 0.42 +-0.49 - 0.44 _ 0.50 - 0.94 +-0.55
September - 0.71 _+0.58 - 1.20 + 0.70 - 2.51 _+0.85
October - 0.61 -+0.63 - 1.09 _+0.70 - 1.80 +-0.97

November - 1.90 +_0.73 - 0.61 _+0.70 - 2.32 + 1.07
December - 2.28 -+1.06 + 0.25 _ 0.75 + 0.13 +-0.95

Average - 0.97 - 1.03 - 1.38

Q BO - 0.20 _+0.082 - 0.28 _+0.081 - 0.17 +-0.106
Solar + 3.02 _+2.21 + 1.36 _+2.03 + 2.53 _+2.58

Yearly calculation:
Ramp -0.73_+0.29 -0.82+__0.27 - 1.35+0.35

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Hradec Kralove Hohenpeissenberg Caribou

Monthly calculation:
January 1.59 + 1.42 + 0.75 + 1.01 - 0.84 _+1.45

February 2.16_+ 1.46 -2.20-+ 1.23 -2.70- + 1.09
March 3.22 _+1.21 - 0.38 -+1.10 - 2.28 +- 1.12

April 1.30_+ 1.02 - 1.96 _+1.28 - 1.34 +- 1.04

May 0.34 +-0.70 + 0.09 -+0.74 - 1.03 -+0.68
June + 0.03 + 0.71 - 0.63 + 0.49 - 0.12 +-0.59

July + 0.07 -+0.63 - 0.26 _+0.41 - 0.52 -+0.43

August +0.17+-0.56 -0.48-+0.42 +0.08+0.43
September 0.74 + 0.51 - 0.89 _+0.57 - 0.79 +-0.55
October 0.85 +-0.69 - 0.22 +-0.74 - 0.88 +-0.53
November 1.11 -+0.73 - 0.40 _+0.63 - 0.54 +-0.63
December 1.38 -+1.17 - 0.59 +-0.83 - 2.01 +-0.89

Average 1.06 - 0.60 - 1.08

QBO 0.09 _+0.09 - 0.29 -+0.069 - 0.13 +-0.076
Solar + 1.85 _+2.52 + 0.15 _+1.80 + 5.34 +-2.14

Yearly calculation:

Ramp 0.69 +-0.34 - 0.51 +-0.23 - 0.63 ± 0.29
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Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Bismarck Arosa Toronto

Monthly calculation:
January - 1.94 + 0.83 + 0.25 _+0.88 + 0.47- + 1.26
February - 1.02 + 0.88 - 0.86 + 1.30 - 1.45 -+0.96
March -2.11 -+0.86 - 1.70_+ 1.25 - 1.67-+ 1.19

April - 1.37-+ 0.84 - 1.62_+ 0.90 - 0.46-+ 0.92

May - 1.45_+0.76 -0.55-+0.60 -2.17-+0.90
June - 1.13-+0.59 - 1.34-+0.46 -0.38-+0.51

July - 0.73 _+0.48 - 0.89 -+0.38 - 1.28 + 0.42

August - 0.55-+ 0.53 - 0.96-+ 0.40 - 0.47_+ 0.34
September + 0.20 __+0.48 - 1.31 -+0.51 - 0.54 _+0.49
October - 0.34 -+0.68 - 0.49 -+0.60 - 1.09 -+0.60
November - 0.75 -+0.95 - 0.47 -+0.58 - 0.99 -+0.54
December - 1.10 -+0.90 - 1.55 -+0.65 - 1.69 -+0.89

Average - 1.02 - 0.96 - 0.98

QBO - 0.19 _+0.076 - 0.13 -+0.056 - 0.11 -+0.063

Solar + 4.39 -+2.02 + 2.10 _+1.49 + 0.36 -+ 1.72

Yearly calculation:
Ramp - 0.81 -+0.27 - 1.02 + 0.19 -0.87-+0.24

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Sapporo Rome Boulder

Monthly calculation:
January + 0.62 -+0.97 - 0.89 -+o. 85 - 0.99 -+0.74
February + 0.55 -+0.94 - 0.07_+ 1.09 - 1.65 -+0.92

March - 1.77_+ 1.08 - 0.81 _+0.97 - 1.77-+ 0.98
April - 0.47_+ 0.78 - 1.02 _ 0.81 - 2.01 -+0.92
May +0.31 _+0.58 +0.15-+0.72 -1.16-+0.60

June + 0.44 + 0.64 - 0.20_+ 0.51 - 1.97-+ 0.52
July + 0.42-+ 0.63 - 0.43 -+0.43 - 1.27_+ 0.32

August - 0.65-+ 0.55 + 0.03_+ 0.47 - 1.49_+ 0.38
September + 0.66 _+0.45 - 0.39 ---0.47 - 1.35 _+0.35
October + 0.33 -+0.59 - 0.11 -+0.44 - 1.13 -+0.54
November + 0.68 -+0.58 - 0.38 _+0.48 - 0.59 _+0.52

December - 0.72 + 0.82 - 0.72 -+0.78 - 1.05 -+0.71

Average + 0.03 - 0.40 - 1.37

QBO + 0.069 -+0.078 - 0.079 -+0.070 - 0.053 -+0.058
Solar +4.63 -+2.10 +2.84 +1.94 +0.64 _+1.58

Yearly calculation:
Ramp + 0.26 -+0.27 - 0.34 -+0.25 - 1.35 -+0.21
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Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Cagliari Wallops Is. Nashville

Monthly calculation:
January -0.97_+0.87 + 1.07_+ 1.23 -0.09_+0.60
February -0.65_+ 1.11 -0.79_+ 1.20 - 1.20+0.91
March -0.69_+0.83 - 1.22_+ 1.20 - 1.43_+ 1.08

April -0.88_+0.84 +0.20_+0.89 -0.08+1.06
May - 0,81 _+0.75 - 0.74 _+0.79 - 1.20 _+0.52
June - 1.61 _+0.48 - 0.93 _+0.65 - 1,49 _+0.44

July - 0.03 _+0.44 - 0.38 _+0.31 - 1.69 + 0.49
August - 0.45 _+0.43 - 0.04_+ 0.29 - 1.49 +_0.50

September - 0.44 _+0.57 - 0.13 ___0.35 - 0.95 _+0.39
October - 0.38 _+0.45 - 0.83 _+0.56 - 1.01 + 0.47

November + 0.72 _+0.52 - 0.32 + 0.65 - 0.96 _+0.59
December - 0.74 _+0.66 - 0.45 _+0.78 - 0.07 _+0.68

Average - 0.58 - 0.38 - 0.97

QBO + 0,030 _+0.092 + 0.084 -+0.075 + 0.045 _+0.079
Solar + 5.38 _+2.43 + 0.21 +_1.62 + 3.90 -+ 1.98

Yearly calculation:
Ramp - 0.48-+ 0.31 - 0.27_+ 0.22 - 1.12 _+0.26

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Tateno Srinigar Kagoshima

Monthly calculation:
January - 0.10_+ 0.94 - 0.29 -+0.66 - 0,11 -+0.79
February + 1.35 _+0.96 + 0.69 _+0.87 + 0.72 -+0.72
March - 1.18 -+1.04 + 0.79 _+0.80 - 0.34 _+0.72

April + 0.39 _+0.74 + 0.09 _+0.55 + 0.54 _+0.67
May - 0.33 _+0.54 - 0.08 _+0.48 - 0.07 ---0.45
June - 0.30 _+0.52 - 0.35 _+0.45 - 0.32 _-0.58

July - 0.08 _+0.52 - 0.74 +__0.40 + 0.15 + 0.45
August - 0.02 -+0.34 - 0.86 _+0.36 + 0.41 _+0.44

September + 0. I4 -+0.29 - 0.24 -+0.28 + 0.04 -+0.49
October - 0.07-+ 0.35 - 0.36 _+0.42 + 0.55 _+0.48
November + 0.29 _+0.37 + 0.00 _+0.40 + 0.33 _+0.43

December - 0.35 _+_0.73 + 0.16 _+0.57 - 0.21 _+0.85

Average - 0.02 - 0.10 + 0.14

QBO +0.14 +0.074 +0,I8 _+0.058 +0.090_+0.088
Solar +1.93 _+1.82 +3.52 _+1.40 -0.54 -+2.45

Yearly calculation:
Ramp + 0.09_+ 0.23 - 0.26-+ 0.19 + 0.33-+ 0.31

345



TOTAL COLUMN OZONE

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Quetta Cairo

Monthly calculation:
January 0.25 -+0.59 - 1.64 -+1.38

February 0.43 -+0.82 - 0.30 -+1.48
March 0.86 -+ 1.03 - 0.24 + 1.18

April 0.92 + 0.54 + 0.41 + 0.66

May + 0.08 _+0.43 + 0.75 _+0.79
June 0.46 + 0.34 - 1.49 _+0.57

July + 0.49 - 0.42 - 0.59 _+0.38
August 0.08 + 0.46 - 0.04_ 0.23

September 0.13 -+0.44 - 0.01 _+0.25
October 0.14_+ 0.50 - 0.07--- 0.24
November 0.21 -+0.46 + 0.81 -+0.81
December + 0.28 + 0.48 - 0.73 -+0.51

Average - 0.22 - 0.26

QBO 0.24_+ 0.08 + 0.011 _ 0.054
Solar + 2.15_+ 1.92 + 1.34 _+1.11

Yearly calculation:

Ramp -0.21 _+0.25 -0.06_+0.19

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Mauna Loa

Monthly calculation:
January - 0.85 -+-0.56

February - 0.56 _+0.79
March - 0.81 _+0.61

April + 0.23 + 0.56

May -0.25_+0.31
June - 0.05 _+0.34

July + 0.16 + 0.31
August - 0.52 _+0.27
September - 0.39 +_0.23
October - 0.41 -+0.29
November - O.67 + 0.45
December - 0.22 -+0.52

Average - 0.36

QBO + 0.147_+ 0.059
Solar +1.I3 _+1.56

Yearly calculation:
Ramp - 0.36 _+0.20

346 "



TOTAL COLUMN OZONE

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Huancayo Samoa

Monthly calculation:
January - 0.24 -+0.19 1.23 +-0.44

February - 0.37 - 0.22 1.21 -+0.38
March - 0.59 + 0.24 1.10 +-O.43

April - 0.38-+ 0.22 0.80-+ 0.36

May -0.30_+0.I9 0.91 -+0.39
June -0.41 -+0.23 1.71 -+0.71

July - 0.31 + 0.24 1.22 -+0.61

August - 0.32 + 0.20 1.13 -+0.46
September - 0.32 _+0.19 0.14 -+0.50
October - 0.10 -+0.26 0.17 -+0.54
November - 0.11 -+0.17 0.65 -+0.38
December - 0.51 + 0.19 0.98 + 0.43

Average - 0.33 0.94

QBO + 0.066 + 0.028 + 0.12 _+0.06
Solar +0.90 -+0.75 0.85--- 1.40

Yearly calculation:
Ramp 0.33 -+0.10 - 0.85 -+0.25

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Aspendale MacQuarie Isle

Monthly calculation:
January -0.80+0.42 +0.25-+0.91
February - 1.20 -+0.38 + 0.55 -+0.79
March - 1.48 -+0.38 + 0.47 -+0.76

April - 0.80 + 0.26 + 0.50 -+0.73
May - 1.17_+ 0.38 - 1.05-+ 0.69
June - 0.79 -+0.48 + 0.50 -+0,87

July - 1.10-+0.68 -0.63-+0.88

August - 1.34 -+0.71 + 0.58 -+1.15
September - 1.57 _+0.70 - 0.05 ---1.52
October -0.80-+0.55 +0.17-+ 1.19

November - 1.33 ---0.44 + 1.66 -+0.94
December - 1.15 _+0.41 - 0.25 -+0.68

Average - 1.13 + 0.22

QBO - 0.26 -+0.066 - 0.25 -+0.12
Solar + 1.96 -+ 1.59 + 6.51 -+3.13

Yearly calculation:
Ramp - 1.01 -+0.20 - 0.01 -+0.40
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(b) Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Reykjavik Lerwick Leningrad

Monthly calculation:
January -2.26_ + 1.66 - 1.86_+0.57 -0.27_+0.93

February - 3.24- 3.04 - 2.12 _+0.99 - 2.69-+ 1.50
March - 0.54 + 1.72 - 1.25 -+0.63 - 2.02 -+ 1.07

April +0.19 + 1.51 -0.68-+0.59 - 1.87- + 0.66

May - 0.22 + 1.57 - 1.21 _+0.48 - 0.88 + 0.61
June + 1.59_+ 0.91 - 0.20_+ 0.38 - 0.44-+ 0.44

July +2.64--+1.11 -0.38-+0.35 +0.27_+0.53

August + 1.88 _+0.94 - 0.32 _+0.33 + 0.32 -+0.46
September + 0.77 _+1.31 - 0.29 _+0.41 - 0.28 _ 0.40
October + 0.68 -+0.69 + 0.75 _+0.44 - 0.45 _+0.52
November + 1.18_+ 1.69 +0.50_+_0.44 -0.38_+0.51

December - 2.28 + 2.04 - 1.13_ 0.36 - 1.36_+ 0.73

Average + 0.03 - 0.68 - 0.84

QBO -0.30-+0.11 -0.28_+0.08 -0.09-+0.10
Solar + 9.69 -+2.88 + 4.14 -+2.11 + 0.87_+ 2.60

Yearly calculation:

Ramp + 0.86 -+0.53 0.49 -+0.19 - 0.43 _+0.26

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Churchill Edmonton Goose

Monthly calculation:
January - 1.63 _ 0.71 - 3.15 -+0.94 - 1.08 + I. 0I
February - 1.60 _+0.74 - 0.36 _+0.64 - 0.69 -+0.66
March - 0.36 + 0.66 - 1.38 _+0.64 - 0.64 _+0.63

April - 0.92 -+0.61 - 0.36 ___0.56 - 1.24 _+0.74

May - 0.85 _+0.53 - 0.46 -+0.42 - 0.80 _+0.65
June +0.22-+0.51 +0.18-+0.45 +0.09_+0.35

July - 0.53 -+0.33 + 0.20 -+0.33 - 0.23 _+0.37

August - 0.59 __+0.50 + 0.27 _+0.42 - 0.14 -+0.35
September - 0.05 -+0.46 + 0.41 -+0.50 - 0.27 -+0.38
October - 1.46 -+0.39 - 0.76 _+0.38 + 0.03 -+0.27
November + 0.15 + 0.54 + 0.33 -+0.59 + 0.58 _+0.42

December - 1.89 _+0.68 - 1.35 _+0.94 - 0.20 _+0.70

Average - 0.79 - 0.54 - 0.38

QBO - 0.26-+ 0.08 - 0.22 _+0.08 - 0.17_+ 0.07
Solar + 4.00 -+2.10 + 2.52 _+2.06 + 5.10 - 2.01

Yearly calculation:

Ramp -0.73_+0.17 -0.24_+0.18 -0.11 -+0.17
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Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986.Model: QS70

Station: Belsk Bracknell Uccle

Monthly calculation:
January 0.99 + 0.82 - 1.48 -+0.88 - 0.63 -+1.09

February 1.22_+0.88 -2.61 "+0.84 - 1.72_+ 1.26
March 1.98_+ 0.74 - 1.73"+ 0.84 - 1.21 +-1.23

April 0.51 _+0.59 -0.59+-0.86 - 1.65"+0.93
May 0.12 "+0.48 - 0.06 "+0.45 - 1.23 + 0.73
June 0.00 "+0.42 - 1.02 -+0.46 - 1.53 +-0.68

July + 0.36"+ 0.35 - 0.87-+ 0.36 - 1.55 -+0.57

August -0.18_+0.32 -0.55"+0.36 -0.94+-0.44
September 0.42"+ 0.38 - 1.00-+ 0.51 - 2.27_+ 0.69
October 0.17 -+0.41 - 0.63 "+0.51 - 1.59 "+0.78
November 1.06 _+0.48 - 0.40 +-0.50 - 2.13 +-0.86
December 2.00 _+0.68 + 0.10 _+0.55 + 0.10 _+0.77

Average 0.69 - 0.90 - 1.36

QBO 0.19 -+0.08 - 0.28 _+0.08 -0.18 _+0.10
Solar + 2.88-+ 2.19 + 0.95-+ 1.94 + 2.84 -+2.41

Yearly calculation:
Ramp -0.35-+0.19 -0.68-+0.19 - 1.28___0.26

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Hradec Kralove Hohenpeissenberg Caribou

Monthly calculation:
January - 1.84 _+0.97 + 0.57 -+0.71 - 0.71 -+0.96
February - 2.28 -+0.97 - 1.79 -+0.84 - 2.04 ___0.72
March - 2.56 "+0.80 - 0.69 "+0.75 - 1.75 "+0.72

April - 0.61 +-0.68 - 1.22 -+0.87 - 0.92 -+0.67
May + 0.14 -+0.47 + 0.30 -+0.50 - 0.77 "+0.44
June + 0.29 + 0.47 - 0.46 -+0.33 - 0.04-+ 0.38

July + 0.35 -+0.42 - 0.17 -+0.28 - 0.41 "+0.28
August + 0.02 "+0.37 - 0.43 -+0.28 - 0.16 "+0.28

September - 0.38 "+0.34 - 0.69 -+0.39 - 0.44 "+0.36
October - 0.26 -+0.46 + 0.03 -+0.50 - 0.49 -+0.34
November - 0.56 -+0.48 - 0.18 _+0.43 - 0.52 -+0.41

December - 1.56 _+0.78 - 0.85 _+0.56 - 1.44 _+0.58

Average - 0.77 - 0.46 - 0.81

QBO - 0.08 _+0.09 - 0.29 _+0.07 - 0.12 -+0.07
Solar + 1.67 + 2.48 - 0.19 "+ 1.80 + 5.12 _+2.07

Yearly calculation:
Ramp - 0.29 "+0.22 - 0.36 _+0.15 - 0.48 +-0.18

349



TOTAL COLUMN OZONE

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Bismarck Arosa Toronto

Monthly calculation:

January - 1.24_+ 0.55 - 0.12_+ 0.59 + 0.31 _+0.85

February - 1.06 + 0.58 - 0.88 _+0.85 - 1.30 + 0.66
March - 1.43 + 0.56 - 1.49 _+0.82 - 1.28 + 0.79

April - 0.71 -+0.55 - 0.83 -+0.59 - 0.18 + 0.61
May - 0.81 + 0.49 - 0.2I -+0.39 - 1.32 _+0.59
June - 0.72 -+0.39 - 0.73 _+0.30 + 0.05 _+0.34

July - 0.46 + 0.31 - 0.46-+ 0.25 - 0.70-+ 0.28
August - 0.19 + 0.35 - 0.64-+ 0.26 - 0.28-+ 0.22

September +0.13_+0.31 -0.87_+0.34 -0.18_+0.33
October - 0.28 + 0.44 - 0.04 -+0.39 - 0.50 + 0.40
November - 0.49 -+0.62 - 0.29 _+0.38 - 0.60 + 0.35
December - 0.87 _+0.59 - 1.35 _+0.43 - 1.00 _+0.59

Average - 0.68 - 0.66 - 0.58

QBO -0.18---0.076 -0.11 +0.06 -0.10-+0.07

Solar +4.14-+2.02 + 1.85-+ 1.51 -0.26- + 1.99

Yearly calculation:
Ramp -0.51 -+0.17 -0.60_+0.12 -0.45-+0.17

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Sapporo Rome Boulder

Monthly calculation:

January + 0.13 _+0.65 - 0.97 + 0.56 - 0.57_ 0.49
February + 0.22 -+0.62 - 0.02 _+0.72 - 1.28 -+0.60
March - 1.40 -+0.71 - 0.89 + 0.63 - 1.14 _+0.64
April -0.06-+0.51 -0.42_+0.52 - 1.12-+0.60

May + 0.21 _+0.38 + 0.25 _+0.47 - 0.70 -+0.39
June + 0.05 + 0.42 + 0.14 -+0.33 - 1.39_+ 0.34

July + 0.04 -+0.41 - 0.18 -+0.28 - 0.77_+ 0.21
August -0.31 _+0.36 +0.19_+0.30 -0.98_+0.25

September + 0.40 -+0.29 - 0.23 -+0.31 - 0.90 -+0.23
October + 0.04 -+0.38 + 0.18 _+0.29 - 0.76 _ 0.35
November + 0.45 -+0.38 - 0.27 _+0.31 - 0.41 _+0.34

December - 0.67_+ 0.54 - 0.93_+ 0.51 - 0.86-+ 0.46

Average - 0.075 - 0.26 - 0.91

QBO + 0.00 + 0.08 - 0.07 +_0.07 - 0.04_+ 0.06
Solar +4.66-+ 2.12 +2.76_+ 1.94 + 0.27_+ 1.59

Yearly calculation:
Ramp +0.10_+0.17 -0.12_+0.16 -0.87_+0.13
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TOTAL COLUMN OZONE

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Cagliari Wallops Is. Nashville

Monthly calculation:
January - 0.92 + 0.52 + 1.03 _+1.03 - 0.19 - 0.39

February - 0.31 -+0.74 - 0.63 +-0.94 - 1.19 + 0.59
March - 0.38 -+0.54 - 1.43 _+0.94 - 1.44 -+0.69

April -0.41 -+0.55 -0.03+-0.70 -0.13+-0.68

May - 0.34 -+0.49 - 0.54 +-0.62 - 0.86 -+0.33
June - 1.03 -+0.31 - 0.76 ---0.51 - 0.92 +-0.28

July - 0.26 ± 0.29 - 0.23 _+0.24 - 1.16 -+0.31

August -0.28+0.28 -0.02-+0.23 -1.14-+0.32
September - 0.53-+ 0.37 - 0.07 + 0.27 - 0.71 _+0.25
October - 0.41 -+0.29 - 0.44 _+0.44 - 0.53 ---0.30
November + 0.22 + 0.34 - 0.41 -+0.51 - 0.89 _+0.38

December - 0.95 + 0.43 - 0.16 +_0.61 - 0.13 + 0.43

Average - 0.47 - 0.31 - 0.77

QBO + 0.027 _+0.091 + 0.082 + 0.075 + 0.044 _+0.075
Solar +5.11 +2.42 +0.16 _+1.62 +3.65 +1.85

Yearly calculation:
Ramp - 0.38 _+0.20 - 0.18 -+0.17 - 0.78 _+0.16

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Tateno Srinigar Kagoshima

Monthly calculation:
January - 0.21 __0.63 - 0.26 + 0.44 + 0.05 + 0.53

February + 0.96 _ 0.64 + 0.64 _+0.58 + 0.74 +-0.48
March - 0.93_+ 0.68 + 0.64_ 0.52 - 0.25_+ 0.47

April + 0.18 +-0.48 + 0.01 +-0.36 + 0.48 ---0.43

May -0,27+0.35 -0.01 +-0.32 +0.06+-0.29
June - 0.33 -+0.34 - 0.15 _+0.29 - 0.05 - 0.37

July - 0.12 -+0.34 - 0.38 -+0.25 + 0.34 -+0.29
August - 0.03 -+0.22 - 0.47 _+0.23 + 0.41 ---0.28
September + 0.17 -+0.19 - 0.08 _+0.18 + 0.25 -+-0.32
October - 0.18 -+0.23 - 0.29 _+0.27 + 0.37-+ 0.31
November + 0.28 -+0.24 - 0.15 _+0.25 + 0.50 +-0.28

December - 0.20 +-0.47 + 0.18 -+0.36 + 0.17 +-0.53

Average - 0.057 - 0.027 + 0.26

QBO + 0.142 -+0.074 + 0.182 _+0.058 + 0.086 -+0.086
Solar +1.99 +-1.82 +3.32 +-1.41 -0.21 +2.39

Yearly calculation:
Ramp +0.72_+0.14 -0.15+-0.12 +0.35_+0.19
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Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Quetta Cairo

Monthly calculation:
January - 0.13 _+0.46 - 1.68 _+1.39

February - 0.25 _+0.65 - 0.35 _+1.49
March -0.27+0.81 -0.27+ 1.19

April - 0.51 _+0.43 + 0.40 _+0.66

May +0.11 -+0.33 +0.74_+0.79
June - 0.29 _+0.27 - 1.49 -+0.57

July + 0.39 + 0.33 - 0.59-+ 0.38
August - 0.16_+ 0.36 - 0.04 _+0.23

September - 0.34 _+0.33 + 0.01 _+0.25
October - 0.37 + 0.37 + 0.07_+ 0.24
November - 0.27 -+0.34 + 0.79 -+0.81
December - 0.27-+ 0.34 - 0.75 -+0.51

Average - 0.20 - 0.26

QBO + 0.242 _+0.078 + 0.011 + 0.054
Solar +2.04 _+1.92 +1.34 _+1.11

Yearly calculation:

Ramp -0.18-+0.19 -0.06_+0.18

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Mauna Loa

Monthly calculation:
January - 0.53-+ 0.38

February - 0.34 _+0.53
March - 0.39 _+0.40

April + 0.06 -+0.37

May - 0.03 -+0.20
June + 0.02 _+0.22

July + 0.12 -+0.20

August - 0.38_+ 0.18
September - 0.34 _+0.15
October - 0.28 -+0.19
November - 0.40 -+0.29
December - 0.19 -+0.34

Average - 0.22

QBO + 0.147_+ 0.059
Solar + 1.01 + 1.57

Yearly calculation:
Ramp - 0.24 -+ 0.13
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Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QST0

Station: Huancayo

Monthly calculation:

January - 0.10 + 0.13
February -0.19-+0,15
March - 0.39 + 0,16

April -0.24-+0.15
May - 0.13-+ 0.13
June -0.17-+0,15
July -0,15-+0.15

August - 0.24 -+0.13
September - 0.22 - 0,12
October - 0.08-+ 0.17
November - 0.02 _ 0.11

December - 0.31 + 0.12

Average - 0.19

QBO + 0.066 _+0.029
Solar +0.80 -+0.77

Yearly calculation:
Ramp - 0.18 -+0,065

Not using data prior to 1/65
Coefficients for individual stations

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Aspendale MacQuarie Isle

Monthly calculation:
January - 0.48 ___0.29 + 0.27_+ 0.62

February - 0.70-+ 0.27 + 0.37-+ 0.52
March -0.74-+0.26 +0.15-+0.50

April - 0.39 _+0.18 - 0.02 -+0.48
May - 0.69 -+0.26 -0.27-+ 0.45
June -0.30__+0.33 +0.40-+0.57

July -0.61__+0.46 -0.10-+0.58

August -0.60-+0.49 +0.81 +0.76
September - 0.92 -+0.48 - 0.35_+ 1.00
October - 0,26 _+0, 38 + 0,07 _+0.78

November - 0,75 -+0.30 + 0.99 -+0.62
December - 0.83 +-0.28 - 0.20 + 0.45

Average - 0.61 + 0.18

QBO -0.24+__0,072 -0.26+_0.12
Solar + 1.51 -+1.80 +6.65-+3.11

Yearly calculation:
Ramp - 0.57_+ 0.15 - 0.12 -+0.25
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(c) Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Reykjavik Lerwick Leningrad

Monthly calculation:
January - 0.85 __0.54

February - 1.71 _+0.97
March - 0.71 _+0.61

April - 0.02 _+0.57
May - 0.43 _+0.47
June + 0.24 + 0.37
July -0,11 -+0.34

August - 0.18 +_0.32
September __ + 0.41 _+0.40
October ¢2 + 1.26 -+0.43

November _ + 0.81 _+0.43
December - 0.24_+ 0.35

Average - 0.13

QBO - 0.24-+ 0.08
Solar - 1.66 -+1.94

Yearly calculation:

Ramp + 0.02-+ 0.20

¢3
O

Z

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Churchill Edmonton Goose

Monthly calculation:

January - 1.45 _+0.83 - 1.07 _+0.93
February - 0.81 + 0.59 - 0.93_+ 0.61
March - 1.47-+ 0.58 - 0.98 _ 0.58

April - 0.62 -+0.51 - 1.36 + 0.69
May - 0.56 -+0.39 - 0.74 _ 0.60
June + 0.30 ± 0.41 - 0.11 ___0.33

July + 0.52-+ 0.34 - 0.01 _+0.34
August + 0.23 _+0.38 - 0.02 + 0.32
September _ + 0.34 + 0.45 - 0.27 -+0.36
October _ -0.31 -+0.35 +0.01 _+0.25

November _ + 0.72 -+0.54 + 0.62 -+0.39
December - 0.19 -+0.84 - 0.37 -+0.65

Average - 0.28 0.44

QBO - 0.12 -+0.08 - 0. I5 _+0.07
Solar + 1.42-+ 1.93 +4.65_+ 1.91

Yearly calculation:

Ramp -0.06-+0.19 -0.13-+0.16
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Belsk Bracknell Uccle

Monthly calculation:
January - 0.51 + 0.77

February - 1.22 +-0.83
March - 1.75 -+0.70

April - 0.39 -+0.56
May - 0.09 -+0.46
June + 0.03 -+0.40

July + 0.43 -+0.34
August - 0.22 +_0.30
September - 0.33_+ 0.36
October - 0.17 +-0.39

November - 0.78 _+0.45
December - 1.76 + 0.65

Average - 0.56

QBO -0,22+-0.08
Solar + 3.59-+ 2.09

Yearly calculation:
Ramp - 0.30_+. 18

t_ t_

O O

Z Z

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986, Model: QS70

Station: Hradec Kralove Hohenpeissenberg Caribou

Monthly calculation:
January - 0.78 +-0.86

February - 1.90 -+0.64
March - 1.76 - 0.67

April - 0.96 ± 0.62

May - 0.88 +-0.41
June -0.16-+0.36

July - 0.34 +-0.26

August - 0.28 +-0.25
September _ _o= - 0.39 -+0,32
October ¢3 _ - 0.40 -+0.31

November _ _ - 0.48_ 0.37
December - 1.63 +-0.52

Average - 0.83

QBO -0.11 _+0.07
Solar + 4.48 +-1.90

Yearly calculation:
Ramp -0.07_+0.21 -0.50-+0.16
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Bismarck Arosa Toronto

Monthly calculation:

January - 1.10 _+0.51 - 0.33 _+0.49 - 0.05 _+0.77
February - 0.98 _+0.54 + 0.01 -+0.73 - 0.98 -+0.58
March - 1.51 -+0.53 - 1.24 + 0.70 - 1.65 + 0.72

April - 0.72 -+0.51 - 0.56 + 0.51 - 0.65 -+0.56
May - 0.79_ 0.46 - 0.36-+ 0.34 - 0.92_ 0.54
June -0.59+0.36 -0.40_+0.26 +0.06_+0.31

July - 0.41 + 0.29 - 0.34 -+0.22 - 0.74 -+0.25
August - 0.14 + 0.32 - 0.28 -+0.23 0.32 _+0.20

September + 0.23 _+0.29 - 0.5I -+0.29 - 0.04 _+0.30
October - 0.09-+ 0.41 - 0.03 + 0.34 - 0.51 _+0.37
November - 0.31 -+0.58 - 0.26 _+0.33 - 0.32 _+0.32
December -0.71 _+0.55 - 1.I6__+0.37 - 1.27_+0.54

Average - 0.59 - 0.46 - 0.62

QBO -0.17_+0.07 -0.13_+0.05 -0.15_+0.06
Solar +4.93-+ 1.93 +2.42_+_ 1.18 -0.19_+ 1.72

Yearly calculation:
Ramp - 0.42 _+0.16 - 0.42 _+. 11 - 0.43 _+. 13

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Sapporo Rome Boulder

Monthly calculation:
January - 0.22 _+0.56 - 0.70 _+0.50 - 0.53 _+0.48

February + 0.18 _+0.54 - 0.30 _+0.63 - 1.37 _+0.59
March - 1.14 _+0.62 - 0.50 _+0.57 - 1.36 _+0.62

April + 0.40 _+0.45 - 0.34_+ 0.47 - 1.21 - 0.59

May + 0.36-+ 0.34 + 0.11 - 0.43 - 0.68-+ 0.38
June + 0.24 _+0.37 + 0.37 _+0.30 - 1.41 _+0.33
July + 0.19 _+0.37 + 0.28 _+0.25 - 0.64 ___0.21

August - 0.10 _+0.32 + 0.70 _+0.27 - 1.00 ---0.24
September + 0.34 _+0.26 + 0.10 _+0.28 - 0.84 _+0.22
October + 0.56 _+0.34 + 0.24 _+0.26 - 0.68 _ 0.34
November + 0.62 _+0.33 - 0.12 + 0.28 - 0.30 _+0.33

December - 0.22 _+0.47 - 0.89 _+0.46 - 1.06 _+0.45

Average + 0.10 - 0.09 - 0.92

QBO +0.08+_0.07 -0.08-+0.07 -0.06_+0.06
Solar + 4.54 -+1.70 + 1.26 -+1.68 + 0.88 _+1.53

Yearly calculation:

Ramp +0.26-+0.15 +0.16_+0.17 -0.83_+0.13

356



TOTAL COLUMN OZONE

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Cagliari Wallops Is. Nashville

Monthly calculation:
January - 0.46 -+0.53 - 0.17-+ 0.36
February - 0.02 _+0.66 - 1.12 _+0.55
March - 0.00 +-0.50 - 1.30 + 0.65

April - 1. I4 - 0.50 + 0.06 + 0.63

May - 0.23_+ 0.45 - 0.65 -+0.31
June - 0.77_+ 0.29 - 0.87-+ 0.26

July + 0.26 -+0.27 - 1.10 -+0.29

August + 0.31 _+0.26 - 1.00 + 0.30
September - 0.05 + 0.34 _= - 0.66 _+0.24
October + 0.03 -+0.27 _ - 0.53 -+0.28

November + 0.55 +-0.31 _ - 0.84 +-0.35
December - 0.56 _+0.40 - 0.34 _+0.41

Average - 0.17 - 0.71

QBO - 0.01 -+0.08 - 0.02 _+0.07
Solar + 1.98+_2.07 +4.31 +- 1.74

Yearly calculation:
Ramp + 0.04 + 0.20 - 0.75 +_0.13

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986.Model: QS70

Station: Tateno Srinigar Kagoshima

Monthly calculation:
January - 0.50 - 0.56 - 0.19 +_0.43 - 0.56 +_0.51
February + 0.14 _+0.57 + 0.68 _+0.59 + 0.20 _+0.46
March - 1.40 +_0.63 + 0.71 +_0.51 - 0.51 +_0.46

April - 0.24 +_0.45 + 0.12 _+0.35 + 0.40 +-0.43
May -0.45---0.32 -0.12-+0.31 +0.19+_0.29
June - 0.37_+ 0.32 - 0.21 _+0.28 + 0.16 + 0.37

July - 0.01 _+0.32 - 0.46 +-0.24 0.48 -+0.29

August +0.05+-0.20 -0.46-+0.22 +0.63-+0.28
September + 0.22 +-0.17 0.07 _+0.17 + 0.62 +-0.31
October +0.07+_0.21 -0.11 -+0.26 +0.21 +-0.30

November + 0.10 +-0.22 - 0.07 +-0.25 + 0.41 +-0.27
December - 0.30-+ 0.43 + 0,28 -+0.35 + 0.08 +-0.53

Average - 0.22 + 0.01 + 0.19

QBO +0.06+_0.07 -0.17-+0.06 -0.05_+0.08
Solar + 1.27_+ 1.57 + 3.58 _+1.38 + 0.24 _+2.47

Yearly calculation:
Ramp +0.10+_0.15 -0.13_+0.12 +0.42-+0.20
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Mauna Loa

Monthly calculation:
January - 0.62 -+0.37
February - 0.56 + 0.52
March - 0.39-+ 0.39

April + 0.07 + 0.36
May - 0.02 _+0.20
June + 0.05 -+0.22

July + 0.12 + 0.20
August -0.31 -+0.18

September - 0.29 _+0.15
October - 0.20 _+0.18
November - 0.37 _+0.29

December - 0.20 _+0.33

Average - 0.23

QBO +0.13_+0.06
Solar + 1.69 _+1.55

Yearly calculation:

Ramp -0.19_+0.13

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Huancayo

Monthly calculation:

January - 0.12 -+0,12
February - 0.19 _+0.15
March - 0.37 + 0.15

April - 0.23 +-0.14
May -0.12-+0.13
June - 0.13 _+0.16

July - 0.07-+ 0. I5
August -0.15_+0.13
September - 0.22 -+0.12
October - 0.04 -+0.17
November - 0.00 -+O.11
December - 0.29 -+0.12

Average - 0.16

QBO + 0.05 + 0.03
Solar + 1.12-+0.78

Yearly calculation:
Ramp - 0.16 _+0.07
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(d) Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QS70

Station: Aspendale MacQuarie lsle

Monthly calculation:

January - 0.53 ---0.26 0.15 -+0.59
February - 0.77 +__0.24 0.32 _+0.50
March - 0.64 ± 0.24 - 0.09 + 0.48

April - 0.20 _+0.16 - 0.28 + 0.46
May - 0.60 + 0.24 - 0.28_+ 0.44
June - 0.49 +__0.31 0.38 _+0.55

July - 0.67_ 0.43 0.06-+ 0.56
August - 0.67+ 0.45 0.50_+ 0.73
September - 0.90 ± 0.44 - 0.49 _+0.96
October - 0.32 +_0.35 0.15 ± 0.75
November - 0.50 _+0.28 0.48 -+0.59

December - 0.75 ___0.26 - 0.26 _+0.43

Average - 0.59 + 0.05

QBO -0.22+0.06 -0.194-0.12
Solar - 0.30 ± 1.50 - 4.97 _+3.05

Yearly calculation:
Ramp - 0.45 ± 0.14 - 0.02 _+0.25

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Reykjavik Lerwick Leningrad

Monthly calculation:
January - 1.44 ± 0.90
February - 2.83 -+1.62
March - 1.28-+ 1.03

April - 0.43 -+0.96

May - 1.08_+0.79
June + 0.63 ± 0.63

July - 0.46 +_0.57
August - 0.29 ± 0.54
September '_ + 0.31 4- 0.67tlI

October _ + 1.46 _+0.72

November _ + 1.18 4- 0.72
December - 0.57 4- 0.61

Average - 0.45

QBO - 0.24_+ 0.08
Solar - 1.74 _+1.94

Yearly calculation:

Ramp - 0.19 _+0.33

t_

£3
O

Z
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Churchill Edmonton Goose

Monthly calculation:
January - 2.64 _+1.38 - 0.82 - 1.47
February - 1.07 -+0.97 - 1.43 -+0.98
March -2.58_+0.96 - 1.23_+0.93

April - 1.00_+ 0.85 - 2.08-+ 1.10
May - 1.28 _+0.64 - 1.20 +_0.97
June + 0.18 _+0.68 - 0.08 _+0.53

July +0.59-+0.50 +0.01 _+0.55

August +0.27_+0.63 -0.16___0.52
September _ + 0.93 + 0.75 - 0.80 _+0.57
October ¢3 - 0.57 ___0.58 + 0.01 + 0.40

November _ + 0.84 +--0.89 + 1.07 -+0.66
December - 0.94 _+1.47 + 0.30 _+1.09

Average - 0.61 - 0.53

QBO - 0.12 -+0.08 - 0.15 -+0.07
Solar + 1.46 _+1.91 + 4.59 _+1.92

Yearly calculation:

Ramp - 0.24 -+0.32 - 0.19_+ 0.26

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Belsk Bracknell Uccle

Monthly calculation:

January - 0.22 + 1.20
February - 1.32 -+1.32
March - 2.23 + 1.11

April - 1.09 -+0.89
May - 0.44 ± 0.72
June - 0.16 ---0.63

July + 0.28 + 0.53
August - 0.46 __+0.48

September - 0.62 -+0.57
October - 0.60 + 0.61

November - 1.64 -+0.72
December - 2.14 -+1.03

Average - 0.89

QBO - 0.22 _ 0.08
Solar + 3.65 + 2.08

e_ e_

O O
Z Z

Yearly calculation: - 0.67_+ 0.28
Ramp +
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Hradec Kralove Hohenpeissenberg Caribou

Monthly calculation:
January - 0.97 -+1.37
February - 2.70 _ 1.03
March - 2.39_+ 1.07

April - 1.42 _+0.99
May - 1.19 + 0.65
June - 0.24 _ 0.57

July - 0.46 + 0.41

August - 0.09 +-0.41
September _ __ - 0.75 + 0.52
October Q Q - 0.80 -+0.50

O O
November Z Z - 0.54 +_0.60
December - 2.30 _ 0.84

Average - 1.15

QBO - 0.12 _+0.07
Solar + 4.76 + 1.98

Yearly calculation:

Ramp 0.46 + 0.35 - 0.68 _+0.27

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Bismarck Arosa Toronto

Monthly calculation:

January - 1.85 + 0.79 - 0.07 _+0.81 + 0.13 _+1.23
February - 1.01 --_0.85 + 0.04 -+1.21 - 1.51 _+0.94
March - 2.27 + 0.83 - 1.65 + 1.17 - 2.30 _+1.17

April - 1.40 ---0.8I - 1.34 -+0.84 - 1.04 + 0.90
May - 1.46 + 0.73 - 0.72 -+0.56 - 1.81 _ 0.88
June - 1.01 _+0.57 - 1.00 -+0.43 - 0.33 +-0.50

July - 0.70-+ 0.46 - 0.77_+ 0.36 - 1.36_+ 0.41

August -0.48+-_0.51 -0.62-+0.37 -0.53_+0.33
September + 0.32 + 0.46 - 0.99 _+0.48 - 0.36 -+0.48
October - 0.16 -+0.65 - 0.42 -+0.56 - 1.12 -+0.59
November - 0.58 ___0.92 - 0.47 -+0.54 - 0.72 _ 0.52

December - 0.97 + 0.87 - 1.55 _+0.61 - 2.08 _+0.87

Average - 0.96 - 0.80 - 1.09

QBO -0.17___0.07 -0.14_+0.05 -0.15-+0.06
Solar +4.97___ 1.93 + 2.56 _+1.14 - 0.11 _+1.67

Yearly calculation:

Ramp - 0.73 + 0.27 - 0.85 -+0.19 - 0.89 +-0.22
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Sapporo Rome Boulder

Monthly calculation:
January + 0.15 +_0.92 - 0.77 -+0.83 - 0.97 -+0.73

February + 0.48 -+0.90 - 0.37 - 1.06 - 1.80 _+0.91
March - 1.68 + 1,03 - 0.51 _ 0.96 - 2.02 _+0.97

April + 0.11 -+0.75 - 0.91 + 0.80 - 2.12 _+0.92
May +0.51 +0.56 +0.05__+0.72 - 1.15 _+0.60
June + 0.62-+ 0.61 + 0.16- 0.51 - 2.02_+ 0.51

July + 0.56 _+0.60 + 0.12 ___0.43 - 1.15 _+0.32
August - 0.40 _+0.52 + 0,70 -+0.46 - 1.52 -+0,38
September + 0,64 + 0.43 - 0.02 -+0.47 - 1.31 _+0.35
October + 0.93 -+0.56 + 0.04 -_ 0.44 - 1.07 _+0.53
November + 0.95 + 0.55 - 0.23 + 0.47 - 0.49 + 0.52

December - 0.29 _+0.79 - 0.88 ± 0.78 - 1.29 + 0.71

Average + 0.22 - 0.22 - 1.41

QBO + 0.09 _+0.07 - 0.08 _+0.07 - 0,06 _+0.06
Solar + 4.45 _+1.69 + 1.03 ± 1.70 + 0.98 _ 1.52

Yearly calculation:

Ramp +0.46"+0.26 -0.01 _+0.28 - 1.34_+0.20

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Cagliari Wallops Is. Nashville

Monthly calculation:

January - 0.59 -+0.86 - 0.22 "+0.57
February - 0.29 "+1.09 - 1.23 _+0.87
March - 0.24 _+0.83 - 1.37 _+1.04

April - 0.54 -+0.84 + 0.12 -+1.02

May -0.65-+0.75 - 1.01 -+0.50
June - 1.40 _+0.48 - 1.47 _+0.42

July +0.32-+0.45 - 1.67-+0.47

August + 0,24 _+0,43 - 1.39 _+0,48
September + 0.02 -+0.57 _ - 0.92 _+0.38r_

October + 0.07 -+0.46 ¢3 - 1.02 -+0.45

November + 1.09 -+0.52 _ - 0.97"+ 0.57
December - 0.49 "+0.66 - 0.30 --+0.65

Average - 0.20 - 0.94

QBO + 0.02 -+0.08 + 0.02 _+0.07
Solar + 2.02 - 2.04 + 4.21 +_1.82

Yearly calculation:
Ramp 0.00 _+0.34 - 1.10 -+0.24
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Tateno Srinigar Kagoshima

Monthly calculation:
January - 0.50 -+0.93 - 0.23 + 0.65 - 0.77_+ 0.82

February + 0.51 _+0.95 + 0.71 _+0.89 + 0.21 _+0.75
March - 1.87_+ 1.05 +0.87+-0.80 -0.64+0.75

April -0.09+-0.75 +0.20-+0.54 +0.50-+0.70
May - 0.58-+ 0.54 - 0.19-+ 0.48 + 0.08--- 0.47
June - 0.40 +-0.53 - 0.42-+ 0.45 - 0.07 +-0.60

July + 0.04 -+0.53 - 0.84 -+0.40 + 0.37-4- 0.47
August + 0.08 -+0.34 - 0.86 -+0.36 + 0.71 -+0.46

September + 0.25--- 0.29 - 0.23-+ 0.28 + 0.50 + 0.51
October + 0.18 -+0.35 - 0.19 -+0.42 + 0.40 ---0.50
November + 0.12 _+0.37 + 0.07 + 0.40 + 0.29 -+0.45

December - 0.49 ___0.73 + 0.27 -+0.57 - 0.27 + 0.88

Average - 0.23 - 0.07 + 0.11

QBO +0.06+0.07 +0.17-+0.06 +0.05-+0.08
Solar + 1.27 -+ 1.57 + 3.73 -+ 1.36 + 0.41 -+2.53

Yearly calculation:
Ramp + 0.15-+ 0.25 - 0.25-+ 0.20 + 0.44-+ 0.33

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Mauna Loa

Monthly calculation:
January - 1.01 _+0.55
February - 0.83 _+0.77
March - 0.88 _+0.59

April + 0.17 -+0.55
May -0.34+-0.31
June - 0.13 -+0.33

July + 0.06 _+0.30
August - 0.56 _+0.27

September - 0.45 -+0.23
October - 0.43 -+0.28
November - 0.73 -+0.43

December - 0.31 -+0.50

Average -0.43

QBO + 0.16-+0.06
Nuclear - 2.28 -+1.16

Solar + 0.60 -+1.57

Yearly calculation: -0.42___0.20
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Huancayo

Monthly calculation:

January - 0.26 + 0.19
February - 0.38 + 0.22
March - 0.58 + 0.24

April - 0.37 + 0.22
May - 0.29 + 0.20
June - 0.42 + 0.26

July - 0.25 + 0.25
August - 0.25 + 0.21
September - 0.32 + 0.19
October - 0.07 + 0.27

November - 0.08 + 0.17
December - 0.50 + 0.19

Average - 0.31

QBO + 0.05 + 0.03
Solar + 1.22 _+0.76

Yearly calculation: -0.31_+0.10

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QS76

Station: Aspendale MacQuarie Isle

Monthly calculation:
January - 0.88 + 0.42 + 0.15 + 0.90

February - 1.35 + 0.38 + 0.52 + 0.78
March - 1.39 + 0.39 + 0.20 + 0.76

April - 0.57 + 0.26 + 0.20 + 0.73
May - 1.12 + 0.39 - 1.03 + 0.68
June - 0.99 + 0.50 + 0.52 + 0.86

July - 1.21 + 0.69 - 0.43 + 0.87

August - 1.41 + 0.73 + 0.33 + 1.15
September - 1.62 + 0.72 - 0.22 + 1.51
October - 0.83 + 0.56 + 0.27+ 1.18
November - 1.08 + 0.45 + 1.15+0.93
December - 1.17 + 0.41 - 0.49 + 0.68

Average - I. 14 + 0.10

QBO -0.23+0.06 -0.19+0.12
Solar +0.01 + 1.39 +4.96_+3.07

Yearly calculation: - 0.98 _+0.22 - 0.16 _+0.40
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(e) Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QNS70

Station: Reykjavik Lerwick Leningrad

Monthly calculation:

January - 1.09 + 0.54
February - 1.94 + 0.95
March - 0.92 + 0.61

April - 0.22 + 0.57
May - 0.60 + 0.47
June + 0.10 + 0.37

July - 0.24 + 0.34
August - 0.35 + 0.32
September _ + 0.23 + 0.40
October ¢3 + 1.04 + 0.43

November _ + 0.55 + 0.43
December - 0.50 + 0.36

Average - 0.33

QBO
Solar
Nuclear

Yearly calculation:

-0.28+0.08

-3.57_+2.00
-0.71 +0.27

-0.18+0.20

O
Z

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QNS70

Station: Churchill Edmonton Goose

Monthly calculation:

January - 1.64 + 0.83 - 1.08 + 0.93
February - 1.00 + 0.59 - 0.94 + 0.62
March - 1.65 + 0.58 - 1.00 + 0.59

April -0.79 + 0.51 - 1.38 + 0.69
May -0.71 +0.39 -0.75+0.61
June + 0.17 + 0.41 - O. 12 + 0.33

July + 0.41 + 0.30 - 0.02 + 0.34
August + 0.09 + 0.38 - 0.04 + 0.33
September '_" + 0.18 + 0.45 - 0.29 + 0.36
October C_ - 0.50 + 0.35 - 0.01 + 0.26

o + 0.50 + 0.54 + 0.61 + 0.40November Z
December - 0.39 + 0.84 - 0.39 + 0.65

Average - 0.44 - 0.46

QBO -0.16+0.08 -0.15+0.07
Nuclear - 0.62 + 0.27 - 0.04 + 0.21
Solar - 0.20 + 1.95 + 4.54 _+1.98

Yearly calculation: -0.20__+0.19 -0.14_+0.17
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QNS70

Station: Belsk Bracknell Uccle

Monthly calculation:
January - 0.58 + 0.77

February 1.32 + 0.84
March - 1.85 + 0.71

April - 0.48 + 0.57

May -0.17+0.47
June - 0.04 + 0.41

July + 0.37+ 0.34
August -0.27+0.31

September - 0.39 + 0.36
October - 0.23 + 0.39
November - 0.85 + 0.46
December - 1.83 + 0.65

Average - 0.64

QBO - 0.22 + 0.08
Nuclear - 0.37+ 0.43
Solar + 3.02 _+2.18

Yearly calculation: -0.35_+0.19

c_ ¢3
C} C}
Z Z

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QNS70

Station: Hradec Kralove Hohenpeissenberg Caribou

Monthly calculation:

January
February
March

April

May
June

July

August
September
October
November
December

Average

QBO
Nuclear

Solar

Yearly calculation:

¢3 C}
Z Z

- 0,20 +.023

-0.76+0.86
-1.87+0.65
-1.74+0.67
- 0.93 + 0.62

- 0.86 + 0.41
-0.15+0.36

-0.33+0.26
-0.27+0.26
-0.37+0.33

-0.37+0.32
-0.45+0.38
- 1.60 + 0.53

-0.81

-0.11+0.07

+ 0.09 + 0.32
+ 5.05 + 1.98

-0.47_+0.18
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QNS70

Station: Bismarck Arosa Toronto

Monthly calculation:
January - 1.25 -+0.51 - 0.49 _+0.49 + 0.06 _+0.77
February - 1.20-+ 0.54 - 0.14 _+O. 73 - 0.88 _+0.59
March - 1.73 ___0.53 - 1.38 _+0.70 - 1.55 + 0.72

April - 0.92 _+0.52 - 0.69 + 0.50 - 0.56 - 0.56
May -0.96-+0.46 -0.48-+0.34 -0.84_+0.54
June - 0.73 +_0.36 - 0.51 -+0.26 + 0.12 -+0.31

July -0.53-+0.29 -0.44-+0.22 -0.69+_0.26

August - 0.25 -+0.32 - 0.39 +_0.23 - 0.25 +_0.21
September + 0.12 _+0.30 - 0.62 -+0.29 + 0.03 -+0.30
October - 0.22 _+0.41 - 0.16 -+0.34 - 0.43 -+0.37

November - 0.46 + 0.58 - 0.42 _+0.33 - 0.22 _+0.33
December - 0.86 _+0.55 - 1.32 -+0.37 - 1.16 +-0.54

Average - 0.75 - 0.59 - 0.53

QBO - 0.18-+ 0.07 -0.15+-0.05
Nuclear - 0.80 +-0.38 - 0.60-+ 0.25
Solar + 3.69 -+ 1.98 + 1.25 -+1.24

Yearly calculation: - 0.54 +_0.18 - 0.53 -+0.12

-0.13+_0.06
+0.38___0.29

+ 0.59 +_1.79

-0.35-+0.14

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986 Model: QNS70

Station: Sapporo Rome Boulder

Monthly calculation:
January - 0.26 +_0.57 - 0.85-+ 0.50 - 0.66 + 0.48
February + 0.13 -+0.55 - 0.44 -+0.63 - 1.55 -+0.59
March - 1.19-+0.63 -0.64-+0.57 - 1.54-+0.63

April + 0.36 -+0.43 - 0.47 + 0.47 - 1.38 + 0.59
May + 0.32 -+0.34 + 0.00 _+0.43 - 0.82 -4-0.39
June + 0.21 +_0.37 + 0.28 +-0.30 - 1.52-+ 0.33

July + 0.16 -+0.37 + 0.19 _+0.26 - 0.74 +-0.21
August -0.13-+0.32 +0.61 -+0.28 - 1.09-+0.25

September + 0.30 -+0.26 - 0.01 _+0.28 - 0.93 _+0.23
October + 0.52 _+0.35 + 0.12 -+0.27 - 0.78 _+0.35
November + 0.58 +-0.34 - 0.26 -+0.29 - 0.41 _+0.34

December - 0.27 +-0.48 - 1.04 _+0.46 - 1.18 ---0.46

Average - 0.06 - 0.21 - 1.05

QBO +0.08_+0.07 -0.10_+0.07 -0.05_+0.06
Nuclear - 0.18 -+0.31 - 0.55 -+0.33 - 1.14 +_0.67

Solar + 4.16 -+1.82 + 0.17 _+1.75 - 0.06 -+ 1.61

Yearly calculation: + 0.22 _+0.16 + 0.06 + 0.17 - 0.92 -+0.14
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QNS70

Station: Cagliari Wallops Is. Nashville

Monthly calculation:
January - 0.53_+ 0.54

February - 0.10 _+0.67
March - 0.07_+ 0.51

April -0.21 -+0.52

May - 0.29-+ 0.46
June - 0.82 -+0.30

July +0.21 -+0.28

August + 0.27-+ 0.27
September - 0.10-+ 0.35
October - 0.02 _+0.29

November + 0.49 -+0.33
December - 0.63 -+0.41

Average - 0.15

QBO - 0.00 -+0.08

Nuclear - 0.38 -+0.63
Solar + 1.46 -+2.24

Yearly calculation: 0.00-+ 0.21

¢3
O

Z

-0.25_+0.37

- 1.20 + 0.56
- 1.40 -+0.65
-0.03_+0.64
-0.74-+0.32

-0.95-+0.27
-1.16-+0.30
- 1.06_ 0.30

- 0.71 -+0.24
- 0.60-+ 0.29

-0.91-+0.36
-0.42-+0.41

- 0.78

+0.01 _+0.07
-0.54+_0.49

+ 3.68 -+ 1.82

-0.81 -+0.14

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QNS70

Station: Mauna Loa

Monthly calculation:
January - 0.69 -+0.36

February - 0.62 -+0.50
March - 0.48 -+0.38

April - 0.02 -+0.35

May -0.14-+0.20
June - 0.09 -+0.22

July - 0.00 -+0.20

August - 0.44 -+0.18
September - 0.41 -+0.15
October - 0.30 _+0.18

November - 0.47 + 0.28
December - 0.29 + 0.32

Average - 0.33

QBO +0.16-+0.06
Nuclear - 2.73 _+1.21
Solar + 0.33 -+ 1.57

Yearly calculation: -0.31_+0.13
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1970 through 1986. Model: QNS70

Station: Tateno Srinigar Kagoshima

Monthly calculation:
January - 0, 37_+ 0.56 - 0.25 +-0.43 - 0.46 +-0.52
February + 0.27 _+0.57 + 0.62 -+0.59 + 0.30 _+0.47
March - 1,27+ 0.63 + 0.63-+ 0.52 - 0.40 + 0.48

April - 0.12 -+0.45 + 0.04 -+0.36 + 0.50 -_+0.44
May - 0.35 +-0.33 - 0.19 +-0.32 + 0.27 +-0.30
June - 0,29 _+0.32 - 0.27 +_0.29 + 0.23 + 0.37

July + 0,06 +_0.32 - 0.51 +_0.25 + 0.54_+ 0.29

August + 0,12 +-0.21 - 0.51 _+0.23 + 0.68 _ 0.28
September +0.30+_0.18 -0.11 ___0.18 +0.67+0.31
October +0,16+_0,21 -0.16_+0.27 +0.28+0.31
November + 0,20 + 0.23 - 0.12 + 0.25 + 0.49 + 0.29

December - 0.17 + 0.44 + 0.22 _+0.36 + 0.18 + 0.54

Average - 0,12 - 0.05 + 0.27

QBO + 0.07 + 0.07 + 0.18 +_0.06 + 0.06 _+0.08
Nuclear + 0.65 _+0.46 - 0.72 +-0.75 + 0.46 +-0.56
Solar + 2.23 _+1.64 + 3.13 +- 1.45 + 0.96 +-2.55

Yearly calculation: + 0.18 _+0.15 - 0.19 -+0.13 + 0.50 ___0.21

(f) Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Reykjavik Lerwick Leningrad

Monthly calculation:

January - 1.71 _+0.89
February - 3.08 +_1.59
March - 1.15 _+1.01

April - 0.65 _+0.94
May - 1.27_+ 0.77
June -0.11 +-0.62

July -0.61 +0.57
August - 0.49 +-0.53
September -_ + 0.09 -+0.66
October ¢3 + 1.19 + 0.71

November _ + 0.88 -+0.72
December - 0.87 + 0.61

Average - 0.68

QBO - 0.28 - 0.08
Solar - 3.49 _+1.97
Nuclear - 0.70 -+0.25

Yearly calculation:
Ramp - 0.43 +-0.33

O

Z
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Churchill Edmonton Goose

Monthly calculation:
January
February
March

April
May
June

July
August

September
October

November
December

Average

QBO
Solar
Nuclear

Yearly calculation:

Ramp

O

Z

- 2.75 _+1.36 - 0.82 _ 1.47

- 1.24 _+0.96 - 1.43 -+0.99
-2.76_+0.95 -1.23_+0.94
- 1.17_+0.84 -2.08_+ 1.10

- 1.44 _+0.64 - 1.20 + 0.97
+ 0.05_+ 0.67 - 0.09___ 0.53

+ 0.47_+ 0.50 + 0.01 ___0.55
+ 0.15_+ 0.62 - 0.16_+ 0.52
+0.76-+0.74 -0.80-+0.57

-0.79-+0.58 +0.01 -+0.41
+ 0.59 ___0.89 + 1.06 -+0.66
- 1.01 -- 1.45 + 0.30 -+1.09

- 0.76 - 0.54

-0.17-+0.07 -0.15_+0.07
-0.21 +- 1.73 + 4.57_+2.00
-0.60 -0.01 -+0.21

- 0.41 -+0.31 - 0.20 - 0.27

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Belsk Bracknell Uccle

Monthly calculation:
January - 0.27 -+1.20
February - 1.40 + 1.32
March -2.31 + 1.11

April - 1.16 + 0.89
May - 0.50 _+0.73
June - 0.22 -+0.64

July + 0.23 + 0.54
August - 0.51 -+0.48

September - 0.66 _ 0.57
October - 0.65 -+0.62
November - 1.69 -+0.72
December - 2.19 _+1.03

Average - 0.94

QBO - 0.23 _ 0.08
Solar + 3.20 _+2.18
Nuclear - 0.28 + 0.41

Yearly calculation:
Ramp - 0.72 -+0.29

t_ r_
¢3 ¢3
O O

Z Z
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TOTAL COLUMN OZONE

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Hradec Kralove Hohenpeissenberg Caribou

Monthly calculation:

January
February
March

April
May
June

July
August

September
October
November

December

Average

QBO
Solar
Nuclear

Yearly calculation:
Ramp -0.61 _+0.35

O O

Z Z

- 0.88 _+1.37
- 2.62 _+1.03
- 2.31 _+1.07

-1.35+0.99
-1.13_+0.65

-0.19+0.57
- 0.42 _+0.41

- 0.03 -+0.41
- 0.68 + 0.52
-0.71 _+0.51

- 0.44 _+0.60
- 2.21 +_0.85

- 1.08

-0.10_+0.07

+ 5.30 _+2.04
+0.29+_0.31

-0.61_+0.28

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Bismarck Arosa Toronto

Monthly calculat&n:
January - 1.95 -+0.79 - 0.21 _+0.81 + 0.26 _+1.22
February - I. 16 -+0.85 - 0.09 + 1.21 - 1.38 _+0.94
March - 2.42 _+0.83 - 1.78 +-1.16 - 2.18 +_1.16

April - 1.54 -+0.81 - 1.46 _+0.83 - 0.93 _+0.90
May - 1.58 _+0.73 - 0.83 _+0.56 - 1.72 -+0.87
June - 1.11 +_0.57 - 1.09_+0.43 -0.25_+0.50

July - 0.78 _+0.46 - 0.86 -+0.36 - 1.30 -+0.41
August -0.57_+0.51 -0.71 _+0.37 -0.46_+0.33

September + 0.23 _+0.46 - 1.09 _+0.48 - 0.27 + 0.48
October - 0.25 _+0.65 - 0.54 _+0.56 - 1.01 _+0.59
November - 0.68 _+0.91 - 0.61 _+0.54 - 0.59 -+0.53

December - 1.08+0.87 - 1.70_+0.61 - 1.94_+0.87

Average - 1.07 - 0.91 - 0.98

QBO - 0.18_+ 0.07 - 0.16_+ 0.05 - 0.14_ 0.06
Solar + 4.09 -+2.00 + 1.71 -+ 1.20 + 0.77 + 1.73
Nuclear - 0.54 -+0.37 - 0.47_+ 0.23 + 0.42 -+0.27

Yearly calculation:
Ramp - 0.82 + 0.27 - 0.96 -+0.19 - 0.79 ___0.22
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TOTAL COLUMN OZONE

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Sapporo Rome Boulder

Monthly calculation:
January + 0.09 + 0.92 - 0.95 _+0.83 - 1.00 + 0.74

February + 0.41 _+0.90 - 0.55_+ 1.06 - 1.84_+ 0.92
March - 1.74 _+1.03 - 0.68 _ 0.96 - 2.07_+ 0.98

April +0.05-+0.75 - 1.06-+0.79 -2.I6_+0.92
May + 0.46 -+0.56 - 0.09 ---0.71 - 1.19 + 0.60
June + 0.58 -+0.61 + 0.04 -+0.51 - 2.05 _+0.52
July + 0.52 -+0.60 + 0.01 _+0.43 - 1.18 -+0.33

August -0.44-+0.53 +0.58-+0.46 - 1.55_+0.38
September + 0.59 _+0.43 - 0.16 _+0.47 - 1.34 -+0.35
October + 0.87-+ 0.57 - 0.11 -+0.44 - 1.10 -+0.54

November + 0.87 -+0.56 - 0.42 -+0.48 - 0.52 _ 0.53
December - 0.37 -+0.79 - 1.07 + 0.78 - 1.32 _+0.71

Average + 0.16 - 0.37 - 1.44

QBO + 0.08 + 0.07 - 0.10 -+0.07 - 0.06 -+0.06

Solar +4.00-+ 1.78 -0.03-- + 1.75 +0.76-+ 1.61
Nuclear - 0.22 -+0.30 - 0.58 _+0.32 - 0.27-+ 0.62

Yearly calculation:

Ramp + 0.40 _+0.27 - 0.15 -+0.28 - 1.35 _+0.21

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Cagliari Wallops Is. Nashville

Monthly calculation:

January - 0.66 _+0.87

February - 0.36 _+1.10
March - 0.31 _+0.84

April - 0.61 -+0.84
May - 0.70 -+0.76
June - 1.45 -+0.49

July + 0.28 -+0.45

August + 0.20 -+0.44
September - 0.02 -+0.58
October + 0.02 _+0.47

November + 1.03 _+0.53
December - 0.56 -+0.67

Average - 0.26

QBO +0.01 +0.08

Solar + 1.59 _+2.18
Nuclear - 0.33 _+0.60

Yearly calculation:
Ramp - 0.05 -+0.35

0_

O

Z

- 0.04 _+0.58

- 1.24 _+0.88
- 1.39 -+1.04
+0.10-+1.02

- 1.02_+0.51
- 1.49_+0.43
- 1.68_+ 0.48

- 1.40 -+0.48
- 0.93 -+0.38
- 1.03 _+0.46

-0.98-+0.57
-0.32-+0.66

- 0.95

+ 0.02 -+0.07

+ 4.08 + 1.92
-0.10-+0.49

- 1.11 -+0.25
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Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Tateno Srinigar Kagoshima

Monthly calculation:
January - 0.37_+ 0.92 0.27 +_0.65 - 0.73 -+0.82

February + 0.65 _+0.94 + 0.67_+ 0.89 + 0.25 _+0.76
March - 1.74 - 1.04 + 0.81 + 0.80 - 0.59 -+0.76

April + 0.03 -+0.74 + 0.14 -+0.55 + 0.53 -+0.71
May - 0.48 - 0.54 - 0.24 + 0.49 + 0.12 -+0.48
June - 0.32 -+0.52 - 0.47-+ 0.46 - 0.05- 0.61

July + 0.11 -+0.52 - 0.87-+ 0.40 + 0.39--- 0.48
August + 0.15 - 0.34 - 0.89 -+0.37 + 0.73 -+0.46
September + 0.32 _+0.29 - 0.26 _+0.29 + 0.52 +_0.51
October + 0.27_+ 0.35 0.22_+ 0.43 + 0.43-- 0.51
November + 0.23 _+0.37 + 0.04_+ 0.40 + 0.33-- 0.46

December - 0.36-+ 0.73 + 0.22 +_0.58 + 0.23_+ 0.89

Average -0.13 -0.11 +0.14

QBO + 0.08-+ 0.066 + 0.18 +_0.06 + 0.06-+ 0.08
Solar + 2.02 -+1.62 + 3.39 -+ 1.44 + 0.68 +-2.66
Nuclear + 0.58 -+0.44 - 0.53 +-0.69 + 0.17 +-0.55

Yearly calculation:
Ramp + 0.23 + 0.25 - 0.29 -+0.20 + 0.48 + 0.34

Using all data
Coefficients for individual stations.

Dobson Units per year change for 1976 through 1986. Model: QNS76

Station: Mauna Loa

Monthly calculation:
January - 1.01 -+0.55

February - 0.83 + 0.77
March - 0.88 + 0.59

April + 0.17 + 0.55

May - 0.34 + 0.31
June -0.13-+0.33

July + 0.06 -+0.30

August - 0.56 -+0.27
September - 0.45 -+0.23
October - 0.43 -+0.28

November - 0.73 _+0.43
December - 0.31 -+0.50

Average - 0.43

QBO +0.16-+0.06
Nuclear - 2.28 _+1.16
Solar + 0.60 +-1.57

Yearly calculation: -0.42_+0.20
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TOTAL COLUMN OZONE

B. (ii) Coefficients from latitudinal band averages prepared from the provisionally revised data
(Bojkov, private communication, 1987)

60°-80°North

53°-64°North
40°-52°North

30°-39°North

and M-83 USSR regional averages (Bojkov, 1988a)

European part
South Central Asia
Siberia

Far Eastern Asia.

Dobson Only: Latitudes 60-80 Degrees North

Model

Time Period
QS70

1/65-12/86
QS76

1/65-12/86

January

February
March

April

May
June

July

August
September
October

November

December

Average

QBO
Solar

Yearly coefficient

- 1.60 + 0.51

-2.16+0.90
- 0.83 _+0.42

- 0.45 _+0.40

- 0.69 ---0.25

+0.05_+0.18

-0.15_+0.20

+0.02_+0.18

-0.06+0.20

-0.11 -+0.32

+0.23-+0.37
- 1.06 _+0.56

-0.56

- 0.20 _+0.057

+ 4.78 _-_4-1.55

-0.12-+0.14

- 2.09 -+0.77

- 3.03 _+1.38

- 1.41 _+0.65

-0.59_+0.62

-0.69+0.39
+0.17_+0.28

+0.13_+0.32

+0.29+0.28
-0.08_+0.31

-0.36_+0.49

+0.18_+0.57

- 1.72 -+0.87

-0.77

-0.20_+0.57

+ 4.84 _+1.56

- 0.05 _+0.22
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Dobson Only: Latitudes 60--80 Degrees North

Model QS70 QS76
Time Period 1/57-12/86 1/57-12/86

January - 0.82 _ 0.51 - 1.42 _+ .84

February - 1.92 +-_0.91 - 3.06 + 1.53
Ma rch - 0.51 + 0.43 - 1.10 -+0.72

April - 0.08 + 0.41 - 0.21 + 0.69

May - 0.39 -+0.26 - 0.46 + 0.44
June + 0.09 + 0.19 + 0.22 ___0.32

July + 0.09 _ 0.21 + 0.36 + 0.35

August + 0.10-+ 0.19 + 0.36-+ 0.31

September + 0.28 _ 0.21 + 0.33 ___0.35
October + 0,60 - 0.33 + 0.53 + 0.55

November + 1.00 +-0.38 + 1.16_ 0.63

December + 0.17 + 0.57 - 0.35 ---0.96

Average -0.12 - O.30

QBO - 0.12 +_0.060 - 0.11 +__0.060
Solar + 2.73 +_1.43 + 2.69 _+1.43

Yearly coefficient + 0.12 + 0.14 + 0.22 + 0.25

Dobson Only: Latitudes 60-80 Degrees North

Model QS70 QS76
Time Period 1/57-12/86 1/57-12/86

January - 0,91 -_+0.51 - 1.53 +-0.84

February - 2.01 +_0.91 - 3.16 + 1.51
March - 0.58 + 0.43 - 1.19 + 0.71

April - 0.15 _+0.41 - 0.29 _+0.68

May - 0.45 + 0.26 - 0.53 - 0.43
June +0.04+0.19 +0.16+0.32

July + 0.04 + 0.21 + 0.31 +__0.35

August + 0.03 +--0,19 + 0.28 ___0.32

September + 0.21 __-0.21 + 0.24 ___0.35
October + 0.52 + 0.33 + 0.42 +_0.55

November + 0.91 + 0.38 + 1.04 + 0.63

December + 0.08 + 0.57 - 0.46 + 0.96

Average -0.19 - 0.39

QBO - 0.13 -+ .060 - 0.13 -+ .060
Solar + 2.12 --+1.47 + 2.11 + 1.45

Nuclear - 0.22 _+0.17 - 0.22 + . 16

Yearly coefficient + 0.05 +-0.15 + 0.15 + 0.25
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Dobson Only: Latitudes 53-64 Degrees North

Model

Time Period
QS70

1/65-12/86
QS76

1/65-12/86

January
February
March

April

May
June

July

August

September
October

November

December

Average

QBO
Solar

Yearly coefficient

- 1.84 _+0.50

-1.79_+0.71

- 1.07_+ 0.36

- 0.52 _+0.34

-0.52_+0.27

+ 0.22 _+0.20
0.00 -+0.22

+0.03_+0.24

+0.03+0.21

-0.19_+0.21

+0.27+0.32

-1.17-+0.46

- 0.55

-0.16-+0.059

+3.92_+ 1.75

-0.14-+0.13

-2.31_+0.75

- 2.33 _+1.05

- 1.57_+ 0.54
-0.84_+0.51

- 0.72 ___0.42

+0.28_+0.30

+0.10_+0.34

+0.05_+0.36

+0.07_+0.32

- 0.34 -+0.32

+0.29_+0.50

-1.77_+0.70

- 0.73

-0.19_+0.056

+4.4 _+1.5

- 0.24 -+0.21

Dobson Only: Latitudes 53-64 Degrees North

Model

Time Period
QS70

1/57-12/86
QS76

1/57-12/86

January
February
March

April

May
June

July

August

September
October

November

December

Average

QBO
Solar

Yearly coefficient

-0.95_+0.48
- 1.55 _+0.67

- 0.69 -+0.34

-0.23_+0.33

- 0.40 _+0.26

+0.06-+0.19

+ 0.02 _+0.21

-0.11 -+0.23
+ 0.21 _+0.20

+0.25_+0.21

+0.77_+0.32

- 0.21 _+0.45

- 0.24

-0.14_+0.054

+ 1.99 -+1.30

+0.03-+0.13

- 1.56 _+0.79

-2.49_+ 1.11

- 1.29 _+0.57

-0.57_+0.55

- 0.66 _+0.44

+0.12_+0.32

+0.11 -+0.36

- 0.11 _+0.38
+0.30_+0.34

+0.18_+0.34

+0.94_+0.53

-0.76_+0.75

-0.48

-0.14_+0.054

+ 1.96_+ 1.29
- 0.03 _+0.22
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Dobson Only: Latitudes 53-64 Degrees North

Model QS70 QS76
Time Period 1/57-12/86 1/57-12/86

January - 1.10 -+ 0.47 - 1.73 __+0.78

February - 1.70 + 0.66 - 2.65 - 1.10
March - 0.83 -+0.34 - 1.44 -+0.57

April - 0.35 ---0.33 - 0.71 ___0.54
May - 0.51 + 0.26 - 0.78 + 0.44
June - 0.04 + 0.19 + 0.07 + 0.32

July -0.06+0.21 +0.01 ---0.35

August - 0.22 + 0.23 - 0.24 -+0.38

September + 0.09 + 0.20 + 0.15 + 0.34
October + 0.10 - 0.21 + 0.01 + 0.34

November + 0.61 _+0.32 + 0.74 + 0.52
December - 0.38 +--0.44 - 0.96 _+0.74

Average - 0.37 - 0.63

QBO - 0.17 - 0.054 - 0.17 ___0.054
Solar + 0.82 _ 1.35 + 0.90 + 1.32

Nuclear - 0.48 ---0.19 - 0.47 + 0.18

Yearly coefficient - 0.09 -+0.14 - 0.18 + 0.22

Dobson Only: Latitudes 40-52 Degrees North

Model QS70 QS76
Time Period 1/65-12/86 1/65-12/86

January - 0.56 - 0.45 - 0.40 + 0.67
February - 1.18 -+0.51 - 1.33 _+0.77
March - 1.33 + 0.55 - 1.61 + 0.83

April -0.58+0.41 - 1.18+0.62

May - 0.30 + 0.24 - 0.72 + 0.37
June - 0.39-+ 0.21 - 0.77___ 0.32

July - 0.43 + 0.20 - 0.78 + 0.30

August - 0.46 -+0.18 - 0.78 - 0.28
September - 0.53 -+0.19 - 0.86 + 0.29
October - 0.27 +-0.26 - 0.61 - 0.40

November - 0.44 + 0.25 - 0.64 + 0.37

December - 1.08 -+0.33 - 1.10 + 0.51

Average - 0.63 - 0.90

QBO - 0.11 _ 0.057 - 0.12 _+0.056
Solar + 1.76 +- 1.65 + 2.04 - 1.61

Yearly coefficient - 0.47 + 0.13 - 0.83 + 0.21
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Dobson Only: Latitudes 40-52 Degrees North

Model

Time Period
QS70

1/57-12/86
QS76

1/57-12/86

January

February
March

April

May
June

July

August

September
October
November

December

Average

QBO
Solar

Yearly coefficient

-0.68_+0.43

- 1.02_+ 0.49

- 1.23 + 0.54

-0.37-+0.40

-0.18_+0.24

-0.09-+0.21

-0.12-+0.19
-0.04_+0.18

-0.11_+0.19

+0.06+0.26

-0.31 _+0.24

- 1.01 _+0.32

- 0.42

-0.12_+0.057

- 0.75 _+1.50

-0.15_+0.15

- 0.65 _+0.70

- 1.33 _+0.80

- 1.69 + 0.89
- 0.93 _+0.66

-0.55-+0.39

-0.41 _+0.34

- 0.43 -+0.32

-0.30_+0.30

-0.40_+0.31

- 0.21 + 0.43
- 0.53 _+0.40

- 1.20 -+ 0.54

-0.72

-0.13-+0.057

-0.79-+ 1.48

-0.47_+0.25

Dobson Only: Latitudes 40-52 Degrees North

Model
Time Period

QS70
1/57-12/86

QS76
1/57-12/86

January

February
March

April

May
June

July

August

September
October

November

December

Average

QBO
Solar

Nuclear

Yearly coefficient

- 0.81 _+0.43

-1.15_+0.49

- 1.35_+ 0.53

- 0.48 _+0.39

-0.28_+0.24

-0.17_+0.21

-0.20_+0.20
-0.12_+0.18

-0.21_+0.19

-0.05_+0.26

- 0.44 _+0.25

-1.14_+0.33

-0.53

-0.14_+0.057

- 1.68_+ 1.55

-0.50_+0.30

-0.24_+0.15

-0.79_+0.69

- 1.47_+ 0.80

- 1.82 _+0.88

- 1.05 + 0.65

- 0.66 -+0.39

-0.51 -+0.34
-0.52-+0.32

-0.40-+0.30

-0.51_+0.31

-0.33_+0.43

-0.67_+0.40

- 1.35 _+0.54

-0.84

-0.14_+0.057

- 1.57_+ 1.51

-0.46_+0.29
-0.58_+0.25
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Dobson Only: Latitudes 30--39 Degrees North

Model QS70 QS76
Time Period 1/65-12/86 1/65-12/86

January - 0.42 _ 0.30 - 0.55 + 0.44

February - 0.25 + 0.37 - 0.43 _+0.56
March - 0.72-+ 0.38 - 0.95 + 0.58

April - 0.35 + 0.27 - 0.44 -+0.41

May - 0.35 + 0.18 - 0.50 -+0.28
June -0.64_+0.19 -0.91 _+0.30

July - 0.23 ---0.18 - 0.34 _+0.29
August - 0.18 + 0.18 - 0.22 + 0.28

September - 0.17 _+0.15 - 0.20 _+0.24
October - 0.15 _+0.14 - 0.23 _+0.21

November - 0.02 _+0.13 + 0.04 _+0.21

December - 0.38 _+0.20 - 0.54 _+0.31

Average - 0.32 - 0.44

QBO + 0.15 _+0.050 + 0.15 _+0.051
Solar + 0.22 _+1.33 + 0.27 + 1.34

Yearly coefficient - O. 16 +_O. 11 - O.21 -+O. 17

Dobson Only: Latitudes 30-39 Degrees North

Model QS70 QS76
Time Period 1/57-12/86 1/57-12/86

January - 0.29 _+0.28 - 0.46 _+0.46

February - 0.10 _+0.36 - 0.27 _+0.59
March - 0.42 + 0.37 - 0.69 _+0.62

April - 0.36 _+0.26 - 0.51 _+0.43

May - 0.26 _+0.18 - 0.45 _+0.29
June -0.43_+0.19 -0.74-+0.31

July + 0.09 ___0.18 + 0.02 -+0.30

August + 0.24 -+0.18 + 0.26 + 0.30

September + 0.14 -+0.15 + 0.14 _+0.25
October + 0.16 _+0.13 + 0.12 _+0.22

November + 0.14 _+0.13 + 0.22 _+0.22

December - 0.24 _+O.19 - 0.43 _+0.32

Average - 0.11 - 0.23

QBO + 0.13 _+0.046 + 0.14 + 0.046
Solar +0.76_+ 1.13 +0.73_+ 1.13

Yearly coefficient + 0.05 _+0.11 + 0.03 _+0.19
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Dobson Only: Latitudes 30-39 Degrees North

Model QS70 Q576
Time Period 1/57-12/86 1/57-12/86

January - 0.31 -+0.29 - 0.48 + 0.46

February - 0.11 +--0.36 - 0.29 + 0.59
March - 0.43 _+0.37 - 0.71 __-0.62

April - 0.38 + 0.27 - 0.53 + 0.44

May - 0.28 + 0.18 - 0.46 + 0.30
June - 0.44 _+0.19 - 0.75 _+0.32

July + 0.08 _+0.18 + 0.01 _+0.30

August + 0.23 + 0.18 + 0.25 + 0.30

September + 0.13 --_0.15 + 0.13 + 0.25
October + 0.14 -+0.14 + 0.11 + 0.23

November + 0.12 + 0.14 + 0.20 + 0.23
December - 0.26 _+0.20 - 0.45 + 0.33

Average - 0.13 - 0.25

QBO + 0.13 -+0.047 + 0.13 _+0.047
Solar + 0.64_+ 1.22 + 0.61 _+1.20

Nuclear - 0.09 -+0.32 - 0.09 -+0.31

Yearly coefficient + 0.05 -+0.12 + 0.02 + 0.19

European M-83 Regional Average.

Model QS70 QS76

January - 0.60-+ 0.97 - 0.95-1.06

February - 0.95-+ 1.60 - 0.67 + 1.74
March - 2.01 -+1.21 - 2.15 _+_1.38

April - 2.73 + 1.02 - 3.19 + 1.18

May - 2.12 +--0.90 - 2.45 +_1.04
June - 0.77 + 0.63 - 0.93 _+0.72

July + 0.36 +-0.91 + 0.08 +--1.05

August - 0.25 -+0.70 - 0.52 + 0.81

September - 0.54 +-0.56 - 0.57 + 0.65
October - 1.13 --+0.56 - 1.03 - 0.65

November - 1.26 + 0.68 - 1.33_+ 0.78

December - 1.29 ---0.82 - 1.30 + 0.95

Average - 1.11 - 1.25

QBO - 0.22 +--0.11 - 0.22 +__0.11
Solar + 2.09 ---3.17 + 2.03 --+3.11

Yearly coefficient - 0.99 + 0.40 - 1.19 +__0.46
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Far Eastern M-83 Regional Average.

Model QS70 QS76

January + 0.62 + 1.09 + 0.59 +-1.17
February + 0.95 +__1.02 + 0.92 _ 1.15
March - 1.49 ___0.92 - 1.73 + 1.04

April -0.91 +-0.89 - 1.47 + 1.01

May - 0.43 + 0.51 - 0.63 _ 0.58
June - 0.05 + 0.41 - 0.03 _+0.47

July + 0.56 ---0.59 + 0.49 +_0.66

August - 1.40 ___0.57 - 1.80 +-0.65

September - 0.64 +-0.46 - 0.72 + 0.52
October - 0.21 + 0.26 - 0.23 ---0.29

November - 0.33 + 0.57 - 0.28 + 0.65

December - 0.76 _+0.80 - 0.84 -+0.91

Average - 0.34 - 0.48

QBO +0.13+0.079 +0.13__+0.078
Solar + 2.36 + 1.58 + 2.35 ---1.56

Yearly coefficient - 0.30 +__0.19 - 0.40 +__0.22

Siberian M-83 Regional Average.

Model QS70 QS76

January -0.70 + 1.16 -0.80 + 1.28

February - 0.70 + 1.16 + 0.04 +--1.68
March + 0.20 __-1.28 + 0.28 + 1.51

April - 1.24 +_1.05 - 1.61 -+1.23

May - 0.37 +_0.64 - 0.46 + 0.75
June - 0.15 + 0.58 - 0.13 + 0.68

July + 0.14 + 0.29 + 0.04 -+0.34

August - 0.87 +_0.59 - 1.17 ___0.70

September - 1.21 ___0.69 - 1.21 + 0.81
October - 1.75 + 0.73 - 1.86 + 0.86

November - 2.94 + 0.98 - 2.99 + 1.15
December - 2.31 _+1.01 - 2.43_+ 1.19

Average - 0.89 - 1.02

QBO - 0.046 -+0.083 - 0.046 _+0.084
Solar + 0.40 __+1.78 + 0.41 _+1.82

Yearly coefficient - 0.39 +__0.25 - 0.55 +--0.29
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South Central Asian M-83 Regional Average.

Model QS70 QS76

January - 1.66_ + 1.15 - 1.89_+ 1.25

February - 0.69 + 1.26 - 1.19_+ 1.44
March + 0.43 _+0.74 + 0.29 + 0.86

April +0.01 -+0.89 -0.11 -+1.04
May - 0.59 _+0.78 - 0.56 _ 0.90

June + 0.00 -+0.46 + 0.00 -+0.54

July - 0.71 _+0.45 - 0.76 _+0.52

August -0.17___ 0.57 - 0.07+ 0.66

September - 0.06 -+0.37 - 0.06 -+0.43
October - 0.38 -+0.56 - 0.54 -+0.65

November - 0.53 + 0.61 - 0.71 -+0.71

December - 1.41 -+0.71 - 1.53-+ 0.82

Average - 0.48 - 0.59

QBO - 0.01 _+0.09 -0.01 -+0.09
Solar + 0.29 -+2.04 + 0.26 _ 2.02

Yearly coefficient - 0.28 -+0.26 - 0.36 _+0.31
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OZONE PROFILE MEASUREMENTS

5.1 SUMMARY AND INDEX

After a general introduction to the nature of this chapter, a brief summary of each section is
given as an extended index.

5.1.1 Introduction

Atmospheric modelers predicted (in 1984, for example) that, within about a century, release
of chlorofluorocarbons at the 1980 rate (along with a doubling of carbon dioxide and methane

and a 20 percent increase of nitrous oxide) would change the global average ozone column

between + 0.2 and -5.2 percent, and that the change in local ozone at 40 km would be -35 to

-55 percent (WMO, 1986, Chapter 13). Because local ozone in the upper stratosphere has great

sensitivity to chlorine, there is an emphasis on studying this region as a possible early indicator

of global ozone change. The Solar Backscatter Ultraviolet (SBUV) satellite instrument has four
channels that are used to measure total ozone, and other channels that are used to measure the

vertical profile of ozone in the upper stratosphere. The ground-based Dobson stations measure
the total ozone vertical column; some Dobson instruments are used in the Umkehr mode to

measure the vertical profile of ozone. Chapter 4 is concerned with trends that have occurred in
the ozone vertical column, and Chapter 5 addresses trends in the vertical profiles of ozone in the

upper stratosphere, where ozone is especially sensitive to chlorine. This region is variously
given as 30 km to 50 km, 16 mb to 1 rob, or Umkehr layers 6 through 9.

(

The SBUV instrument was launched on the Nimbus-7 satellite in October 1978. For the

period 1979-1985, the newly (1986) interpreted data showed, among many other things, I) that
the maximum local ozone reduction occurred at an altitude of 50 km, instead of at the theo-

retically predicted 40 km (WMO, 1986, Chapter 13) and 2) that, between _+30 degrees latitude,

the maximum local ozone reduction was 20 to 25 percent instead of the theoretically predicted 10

to 15 percent (WMO, 1986, page 761). The relatively narrow purpose of this chapter is to confirm,

disprove, or modify the SBUV-reported ozone changes in the middle and upper stratosphere.

Eight other satellite and ground-based systems were identified that give information about the
ozone vertical profile between 1979 and 1987 and that are judged applicable to this study (Table

5.1). To the extent that the SBUV trends are not supported, the question becomes: What trends

in ozone are indicated by the other observations?

Table 5.1 Ozone Measuring Systems and Periods of Available Data

Type Description Time Period

Satellite SBUV

Satellite SAGE
Satellite SAGE-II

Satellite SBUV-II

Ground-based Umkehr stations using Dobson

spectrophotometer
Satellite SME

Satellite SMM

Satellite LIMS

Rocket ROCOZ-A

October 1978 to February 1987
February i979 to November 1981

November 1984 to present

December 1984 to present

1950"s to present

January 1982 to December 1986

(SMM or UVSP) 1985 to present

October 1978 to May 1979
1985
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5.1.2 Solar Backscatter Ultraviolet (SBUV) Instrument

According to the archived SBUV data for 1979-1986, the ozone changes are not subtle effects

buried in noisy data, requiring a detailed analysis to see whether they are statistically significant.

They are large effects, clearly visible to the naked eye (Figures 5.1-4). The approach of this
chapter is first to compare the SBUV results against other satellite and ground-based systems in

terms of conspicuous aspects of the primary data, and only later to examine derived statistical

quantities.

5.1.3 Ozone Trends From Comparison of Stratospheric Aerosol and Gas Experiment
(SAGE) -I and -II

5.1.3.1 Conspicuously Visible Results

A comparison of SAGE-I and SBUV ozone measurements is presented for February 1979
through November 1981, and of SAGE-II and SBUV ozone measurements for October 1984

through December 1986. The SBUV data were searched for those events nearly coincident in time

and space to the SAGE-I and -II events (Figure 5.5). The working data for such coincidences

were analyzed as time series in several latitude bands; e.g., see Figures 5.6-11 for Umkehr layers

6 to 9 at 40°N and 40°S. With some exceptions at layer 6, SAGE-I ozone layer amounts are
consistently lower, by 4 or 5 percent, than SBUV amounts in 1979-1981, but SAGE-II ozone layer

amounts are consistently higher, by 10 --- 3 percent, than SBUV amounts in 1984-1986--a change

of up to 15 percent. For Umkehr layers 6 through 9, the 198001985 offset between SAGE and

SBUV data increases monotonically with altitude by between 4 percent and 15 percent (Figure

5.16). The magnitude and sign of this conspicuous offset are a large fraction of the entire change
in ozone given by SBUV data between 1979 and 1986 (Figure 5.4). The large decrease in ozone

that SBUV reports in layers 7 to 9 over this same period, 8 to 17 percent, is not supported by

SAGE-I and SAGE-II data comparisons. On the basis of conclusions reached in Chapters 2 and

3, this difference is ascribed to an insufficiently corrected degradation of the SBUV diffuser plate.

5.1.3.2 Small Ozone Changes Requiring Careful Statistical Analysis

SAGE-I and SAGE-II satellite data were used to estimate the change in the upper strato-

spheric ozone profile between 198001981 and 1985-1986. The fundamental SAGE measurements

are concentration profiles as a function of geometric altitude from 25 km to 50 km. On the basis of

spatial intersections between SAGE-I and SAGE-II over corresponding 2-year periods that are 5
years apart, comparisons are performed between SAGE-I and SAGE-II ozone concentration

measurements. (Because of the differences in the sampling pattern, the number of intersections
between SAGE-I and SAGE-II is much smaller than the number of coincidences between SAGE

and SBUV, causing the SAGE-I and -II comparisons to be noisy. Compare Figure 5.5) The
percentage differences are averaged in time within 10-degree latitude bands and plotted versus

altitude in Figure 5.17. The magnitude of the differences is only on the order of 5 percent. The

altitudes of maximum percentage ozone reduction are between 40 km and 45 km, and the

magnitudes of these reductions vary between 2 and 8 percent. With some exceptions, the pattern

is an ozone decrease in the upper stratosphere and another decrease, near 25 km, between 1980
and 1986.

These ozone profiles were averaged over the region of maximum density of SAGE-I and -II

coincidences, 20050°N and 20-50°S (Figure 5.18). The average ozone profiles show an ozone

x_

i
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decrease between 35 km and 45 km, with the maximum ozone reduction of 3 percent occurring at

40 km; another region of similar percentage ozone decrease occurring at about 25 km; and

essentially zero ozone change at 30 km and at 50 km. The 95 percent confidence level for the

average ozone reduction in the upper stratosphere indicated by SAGE over the 5-year period is

___3 percent. The estimated relative systematic error is +_ 2 percent between the SAGE-I and

SAGE-II instruments. The unexpected 3 percent ozone reduction indicated at 25 km, near the
ozone concentration maximum, should be given careful consideration in the future to see if it is a

weak manifestation of the low-temperature ozone destruction process shown in the Antarctic

spring.

5.1.4 Solar Backscatter Ultraviolet II (SBUV-2)

The national plan for ozone monitoring is to launch other SBUV instruments, about every 2

years, to obtain overlapping periods of ozone satellite data, and to use this matching procedure,

along with the Dobson instruments, to correct for instrumental degradation. The first example of
this plan was the SBUV-2 system, launched in December 1984, which has been returning data

suitable for deriving total ozone and ozone profiles since early 1985. The most powerful method

of verifying, modifying, or disproving the SBUV-reported trends would be to compare at least

two aspects of SBUV and validated SBUV-2 data: 1) the ozone magnitudes reported by the twin

instruments immediately after launch, and 2) any change using the first 2 years of SBUV and the

corresponding 2 years of SBUV-2 5 years later (as was done with SAGE-I and -II). Members of

the team responsible for SBUV-2 data told the Ozone Trends Panel in January 1988 that the

reinterpreted data were so preliminary and so incompletely examined (even 3 years after launch)

that they should not be used in this report.

5.1.5 Umkehr Measurements of Upper Stratospheric Ozone

Direct examination of the Umkehr data for layers 6, 7, and 8 shows that ozone decreased

noticeably between 1979 and 1986, but this simple method of inspection is complicated by the

large effect of aerosols from the El Chich6n eruption in the middle of this period (Figures

5.24--26). In terms of the injected quantity of stratospheric sulfate aerosols, E1Chich6n was one of

the most powerful volcanoes of the century. An objective method for correcting the effect of

aerosols on Umkehr observations uses stratospheric aerosol profiles observed by light detection

and ranging (lidar), a particle-size distribution based on stratospheric (but not site-coincident)
measurements, ozonesonde profiles, and radiative transfer theory similar to that for the Umkehr

inversion algorithm. This method was applied to five northern midlatitude Umkehr stations

(between 36°N and 52°N) to estimate changes in the ozone profile from 1978 through 1987.

Combining statistical errors and estimated errors caused by aerosols, Umkehr data for five

stations show ozone changes: - 3 + 3 percent in layer 6; - 8 percent ___4 percent in layer 7; and

- 9 percent __+5 percent in layer 8, between 1979 and 1986. At layer 8, for example, the ozone
change given by SBUV is about - 15 percent (Figure 5.4) and that given by SAGE-I and -II is - 3

+__3 percent (Figure 5.18). The SAGE and Umkehr error estimates are for a 95 percent confidence
level but do not include possible systematic errors.

5.1.6 SBUV, SAGE-I, Limb Infrared Monitor of the Stratosphere (LIMS) Ozone
Intercomparison (Spring 1979)

These data show that three totally different, newly launched satellite systems agree with each
within a range of about 4 percent in measuring zonal mean ozone amounts in Umkehr layers 6 to 9.
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5.1.7 Trends at Upper Boundary of the Stratosphere (SBUV, Solar and Mesosphere
Explorer [SME], and Solar Maximum Mission [SMM])

At 1 mb, the upper altitude limit of SBUV measurements and the lower altitude limit of SME

measurements, 5 years of SME data (1982-1986) and 3 years of SMM data (I985-1987) at 55 km

show no conspicuous ozone decrease. This absence of trend at 55 km is evidence against a 20
percent decrease at 50 km, which is given by SBUV.

5.1.8 Rocket Ozonesonde (ROCOZ-A)

In March to April 1979 and 1985, two series of rocket ozone soundings were conducted at

Natal, Brazil. Above 22 km, stratospheric ozone variability was 2 percent or less during the 3

weeks of each measurement campaign, with stratospheric temperature and pressure vari-

abilities half that amount. ROCOZ-A was used as a transfer instrument to compare various
satellites during one of these periods of quiet atmosphere. For Umkehr layers 6, 7, 8, and 9, five

instruments (in 1979, SBUV, LIMS, and SAGE-I; in 1985, SBUV, SAGE-II, and ROCOZ-A) gave
instrument-to-instrument variability of 4 or 5 percent.

In Section 5.1.2 it is stated that this chapter looks first for conspicuous trends in the data,

readily seen by the eye. In this section, this approach is extended to obtain an overall judgment

about the ability of satellites to measure trends in upper stratospheric ozone.

5.2 SOLAR BACKSCATTER ULTRAVIOLET INSTRUMENT (SBUV)

The SBUV instrument, launched on the Nimbus-7 satellite in October 1978, was in operation
until February 1987. It measured backscattered ultraviolet solar radiation at a time close to local

noon; algorithms translated these measurements into vertical profiles of ozone from the middle

to the top of the stratosphere. Additional channels of the instrument simultaneously measured

the total vertical ozone column. In its circumpolar orbit, SBUV obtained enough data in a day to
yield the total ozone column and the vertical ozone profile between about 30 km to 50 km over the
entire globe, except the region of polar night (Bhartia et at., 1985). This accumulation of ozone

measurements has gone on continually from late 1978 to mid-1987 to yield a magnificent body of
data.

These ozone data are the product of remote measurements, and the final product is the result

of an inversion of the physical measurements using a mathematical algorithm and requiring
input of other atmospheric quantities. The NASA Ozone Processing Team translated the raw

physical measurements from SBUV and deposited the results in a publicly available archive. For

the period 1979-1985, the newly interpreted data showed, among other things, that the
maximum local ozone reduction occurred at an altitude of 50 km and that there was more than a

20 percent local ozone reduction from pole to pole at 50 km. For 1985 relative to 1979, atmospheric
modelers calculate that chlorofluorocarbons and variations in the solar cycle would have reduced

local ozone by a maximum of about 5 to 12 percent and the altitude of maximum reduction would

be about 40 km (see Chapter 7 of this report).

In the.summer of 1986, a member of the NASA Ozone Processing Team presented the SBUV

results to the Subcommittee on Health and the Environment of the House Committee on Energy

and Commerce. Members of Congress expressed their concern that if ozone is really decreasing

two or three times faster than the atmospheric modelers predict, and in a different region of the
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stratosphere, it is very important to understand why it is happening. In direct response to the

Congressional request, the Ozone Trends Panel was established. The following samples of
SBUV data illustrate the features that stimulated the formation of the Ozone Trends Panel.

The global series (70°S to 70°N) of monthly average ozone data for November 1978 through

September 1984 is shown for Umkehr layers 6 to 9 in Figure 5.1. The plots in the left column show

the original data in Dobson units, and those in the right column show data that have been

deseasonalized by removing the annual and semiannual seasonal components (Reinsel et al.,
1988). The plots show a definite downward trend in the SBUV ozone data, and annual variations

that are larger than the decreasing trend. The graphs of ozone in Umkehr layer 6 show a sharp

dip beginning in mid-1982, ascribed to the volcanic eruption of E1 Chich6n in April 1982.

The ozone data at the 1-mb level from the SBUV files are plotted for 40°N and 10°N latitudes

and as a function of time from fall 1978 to spring 1987 in Figure 5.2 (Aikin, private communica-

tion, 1987). Like Figure 5.1, this figure shows conspicuous ozone decreases between 1979 and

1987, and seasonal oscillations of ozone even larger than the decreasing trend. Figure 5.2

illustrates an important sampling requirement for any attempt to check the SBUV data against

limited data sets. If one used n + ]/2 years of data, for example, one would produce strongly
different linear trends depending on whether the first point was at the minimum or maximum of

the seasonal cycle. One should use an exactly integral number of years of data or a proper
statistical method to remove seasonal oscillations.

Another presentation of SBUV data is given in Figure 5.3, which for 50°S shows vertical
profiles of ozone mixing ratios from 25 km to 57 km and for the intervals 1979-1982, 1979-1984,

and 1979-1986 (Chandra, 1987). For 1979-1986, the maximum ozone reduction, 25 percent,

occurs at 50 km. Figure 5.4 shows a more extensive set of similar data given as contour plots of

local ozone reduction as a function of altitude and latitude. This figure shows local ozone

reductions at 50 km to be 20 percent or more at all latitudes (Chandra, 1987).
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Figure 5.1 Global averages of SBUV ozone data for November 1978 to September 1984 using data
between 70°S and 70°N with equal surface weighting, including Umkehr layers 6 to 9.
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Figure 5.2
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Figure 5.3 The trend in SBUV ozone mixing ratio as a function of height for three periods, January 1979 to
March 1982 (pre-EI Chich6n period), January 1979 to December 1984, and January 1979 to October 1986.
For each period, the percentage change is computed using a least square fit of a time series containing the
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Figure 5.4 The percentage change in ozone mixing ratio as a function of altitude and latitude from
1979-1986. The percentage change is computed for each pressure and latitude, as in Figure 5.3.

Eight other systems (listed in Table 5.1) give information about the ozone vertical profile

between 1979 and 1987 and are judged to be applicable to this study. In checking the SBUV

trends, it must be appreciated that the SBUV data represent the only complete global set

collected on a daily basis over an 8-year period. Other ozone data sets have one or more

restrictions: limited time coverage, limited spatial coverage, or limited altitude range. In most

comparisons reported here, the data of these restricted systems are matched in space and time

with a portion of the data of the complete SBUV set. For any single comparison, differences

between SBUV and the other system could be due to systematic errors in SBUV, to systematic

errors in the other system, to the mutual errors of the two systems, or to sampling errors.

As discussed in Chapter 2, the different instruments measure different properties of ozone; it

is sometimes not a straightforward matter to compare one system with another. For example, the

primary data product from SBUV is the column of ozone over the Umkehr ozone layers, defined

in terms of atmospheric pressure, and the primary data product from SAGE is the ozone

concentration as a function of altitude. For these two systems to be compared, it is necessary to

translate the SAGE concentrations into SBUV pressure layers using local atmospheric tempera-

tures and pressures from roughly coincident auxiliary meteorological observations. Between the

beginning of this study in December 1986 and its conclusion in April 1988, most of the satellite

data sets were reevaluated from the beginning to maximize their value in testing for ozone
trends.

Since the archived SBUV data challenge the results of current theoretical models, theoretical
models are not used as a screen for what to believe or not as far as the data are concerned. The
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first examination of the data is strictly empirical; evaluations are based on considerations such as

calibration, algorithms, statistics, and searching examinations for systematic errors. The strato-

sphere is extremely complex, and not all data studied here point in the same direction. The

approach used is one of considering all the data, considering the results from this report's

chapters on calibrations and algorithms, and formulating general conclusions, including esti-
mates of errors. These general conclusions, derived from the observational data, are then

compared with theoretical predictions of the atmospheric models.

5.3 OZONE TRENDS FROM COMPARISON OF SAGE-I and SAGE-II

5.3.1 Introduction

The two satellite experiments, SAGE-I and SAGE-II, infer atmospheric constituents by

measuring the solar-spectral transmission profiles attenuated by the Earth's limb during a local
satellite sunrise or sunset (solar occultation technique). This method is suited to measuring

long-term changes in atmospheric species because it is self-calibrating--that is, the measured
solar irradiances are normalized with respect to the observed unattenuated solar irradiance for
each profile. The presence of ozone is inferred from the transmission measurements in the

600 nm region at the center of the Chappius band, using an iterative onion peel inversion

scheme (discussed in detail in Chapter 3). The constructed ozone profiles extend from cloud tops
upward to a height where the signal-to-noise ratio limits the usefulness of the information; for

SAGE-I, the upper limit is about 55 km, and for SAGE-II it is approximately 65 km. The vertical

resolution of the retrieved ozone profile is I km, but because of increased random noise at higher

altitudes, each profile of ozone concentration is smoothed over a 5 km layer at heights greater
than about 45 km.

SAGE-I and SAGE-II use essentially the same instrument design; both instruments have

almost identical optical pathway assemblies. Minor differences between the two sensors lie in
the addition of three more channels to the SAGE-II instrument to the four on SAGE-I, the use of

a rectangular field of view on SAGE-II versus a circular one on SAGE-I, and the use of narrower
band passes on SAGE-II.

The principal sources of error in the measurement of an individual ozone profile are
radiometric imprecision, digitizer truncation, and scan-mirror pointing errors. These random

errors are approximately uncorrelated vertically; their combined effect on an individual retrieved

ozone profile is estimated at each point on the profile from the variance of the measurements

from approximately four to five scans of the SAGE mirror across the viewing altitude. This

uncertainty is provided to the data user in the form of error bars for each ozone profile. Each

SAGE profile, however, also possesses an uncertainty in reference altitude of approximately 0.25

km, which contributes to uncertainties in profile repeatability.

Table 5.2 lists the expected systematic errors of SAGE-I and SAGE-II ozone measurements.

The principal uncertainties arise from instrument scan-mirror calibration and our knowledge of
the absorption cross-section of ozone at 0.6 fm convolved with instrument bandpass and solar

spectrum. Aerosols can also produce biases in the ozone retrievals, but only at altitudes where
aerosol concentrations are large (i.e., mostly below 25 km). Table 5.3 lists the random-error

estimates of the SAGE-I and -II instruments. As can be seen, the random error components for
both SAGE instruments are about 10 percent, for a vertical resolution of 1 km. As indicated in

Table 5.2, the imprecision is much less for SAGE estimates of the ozone content of Umkehr
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Table 5.2 SAGE Systematic Errors

SAGE-I SAGE-II

Ozone absorption cross-section
Scan mirror calibration

Rayleigh cross-section

Aerosol optical properties
Altitudes <25 km

Altitudes >25 km

6% 6%

2.0% 1.0%

0.5% 0.5%

4.0% 4.0%

<1.0% <1.0%

Table 5.3 SAGE Errors Affecting the Precision and Repeatability of Ozone Measurements for a
Vertical Resolution of 1 km

Random errors

Altitude SAGE-I and -II

(km) (%)

Ozone errors due to 0.25 km

uncertainty in reference height
(%)

45 12 6

35 9 6
25 8 3

layers. Thus, the absolute uncertainty in the SAGE measurements is approximately 6 percent

between 25 km and 50 km altitude, provided a sufficient number of measurements is made. The

relative systematic error between the SAGE instruments is expected to be 2 percent or less

(Cunnold et al., 1984 and 1989; McCormick et al., 1984a). For the sake of this report, all SAGE-I

and SAGE-II ozone data were recalculated on a common basis using the most recent physical

and spectroscopic data. This major reworking of raw data and indepth interpretation of the

results were completed by the SAGE team in 6 months.

5.3.2 Calculation of SAGE-I and -II Umkehr Layer Amounts

The primary ozone data product of SAGE-II is concentration as a function of geometric
altitude with a vertical resolution of 1 km. In order to generate a data product from SAGE-I and

-II, comparable to that of SBUV, SAGE-I and -II profiles must be vertically integrated over

pressure levels corresponding to the Umkehr layers used with the SBUV data. Thus, there must

be a conversion from SAGE-I and -II altitudes to pressure levels. Meteorological information
used to make this conversion was obtained from the National Meteorological Center (NMC)

global data set.

Given an Umkehr layer bounded by pressure levels Pb and Pt, the objective is to obtain an

estimate of the layer amount as given by the integral

N = "|h'n(h) dh
"J hb

where n(h) is the SAGE-I and -II ozone number density and h is altitude, with hb and h t the

altitudes corresponding to the pressure levels Pb and Pc, respectively. The trapezoidal rule was
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used to obtain the approximation to N. The only assumption was that the logarithm of pressure

varies linearly with altitude over the range of 1 km or less. Linear interpolation was used to

obtain estimates of the SAGE-I and -II ozone concentration corresponding to the pressure levels

pb and pt. Only layer amounts corresponding to Umkehr layers 6 to 9 were computed and
compared in this study.

5.3.3 Generation of Matching Pairs Between SAGE and SBUV Data

Interannual atmospheric variability of ozone, combined with the differences between

SAGE-I and -II and SBUV geographical coverage, preclude any simple comparison between the
ozone layer amounts reported by both instruments. To minimize these inherent differences, the
SBUV Nimbus-7 Compressed Profile Ozone (CPOZ) Version 5 data were searched for those

events nearest in space and time to individual SAGE-I and -II events. The "pairing" of the

satellite observations is expected to eliminate biases in the comparison due to seasonality and
spatial sampling differences. SAGE-I and -II pairs were generated in the following manner: for
each SAGE-I or SAGE-II event, all SBUV events within 12 hours of the SAGE event were

isolated; from these SBUV events, the one that was spatially closest in longitude and latitude to
the SAGE event was chosen.

The SBUV data search produced approximately 6,500 SAGE-I/SBUV pairs that, on average,

were separated by 0.3 _+ 0.1 day in time, 7 _+ 6 degrees in longitude, and 1 _+ 1 degrees in
latitude. Approximately 19,000 SAGE-II/SBUV pairs were generated that, on average, had a

separation of 0.3 + 0.1 day in time, 6 _+ 4 degrees in longitude, and 1 _+ 1 degrees in latitude. The

working set of SAGE-I and -II/SBUV pairs encompassed the periods February 22, 1979, to

September 28, 1981, and October 25, 1984, to December 31, 1986; the first period corresponds to

almost all of the measurement period for SAGE-I, and the second to the first 2 years of SAGE-II
measurements.

SAGE-I and-II scan the atmosphere at Earth's limb near the terminator twice on each of its 15

daily orbits. The orbital inclination causes the observation latitude to range periodically from

approximately 75°S to 75°N. The latitudes of the SAGE-I measurement locations are displayed in

Figure 5.5. Due to the SAGE-I orbital elements, the exact date of repeat coverage changes from

year to year. The latitudes of SAGE-II measurement locations also are displayed in Figure 5.5.

Unlike SAGE-I, almost perfect overlap occurs in latitude from one year to the next. Any gaps in

the curves are periods during which no satellite occultations occurred. Because of power
problems on the satellite, only sunset data were taken by SAGE-I after July 1979.

For analysis purposes, the SAGE-I and -II and SBUV pairs were spatially grouped into 13

latitude bands of a 10-degree width each. These are marked in Figure 5.5, with bands centered at

0, -+10, + 20, + 30, + 40, ___50, and _+60 degrees. The pairs were also temporally grouped into
clusters. A cluster is a collection of events sampled between the time SAGE-I and -II enter, and

subsequently exit, a given latitude band. The duration defining a cluster is limited to a maximum

of 1 week. A given latitude band might contain more than one cluster if SAGE sampled the
latitude for a period greater than 1 week.

5.3.4 Characteristics of the SAGE-I and -II and SBUV Layer Amounts

When arranged in a time series, the sequence of cluster means displays the expected features

of seasonal ozone variability. The cluster means of SAGE-I and SBUV are shown in Figures 5.6,
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Figure 5.5 SAGE-I and SAGE-II yearly latitudinal coverage. In order to differentiate between the years in
SAGE-I sunset, the peak at julian day 80 occurred in 1979; the peak at julian day 67 occurred in 1980; the

peak at julian day 49 occurred in 1981. Note that because of almost perfect overlap, the SAGE-II latitudinal
coverage appears as a single curve even though several years are plotted.

5.7, and 5.8 for 40°S, Equator, and 40°N, respectively. Those for SAGE-II and SBUV are shown in

Figures 5.9, 5.10, and 5.11 for 40°S, Equator, and 40°N, respectively.

Both the SAGE-I/SBUV and the SAGE-II/SBUV comparisons clearly display the annual

variation of ozone at midlatitudes and the semiannual oscillation at the Equator. Furthermore,

both instruments appear to respond in a manner similar to shorter term variations. It is clear from

Figures 5.7, 5.8, and 5.9 that SAGE-I and SBUV track each other reasonably well, with a slight

tendency for the SAGE-I layer amounts to be lower than the corresponding SBUV layer

amounts. The results indicate the positive finding that both SAGE-I and -II and SBUV showed

similar seasonal and shorter term fluctuations in the ozone in Umkehr layers 6 to 9. This detailed

agreement as a function of time is significant when one considers that the techniques are totally

different, incorporating extinction in the green wavelength region at spacecraft sunrise or

sunset, as compared to backscattered ultraviolet measurements taken from a different spacecraft
at the nadir.
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When contrasting SAGE-II with SBUV (Figures 5.9 through 5.11), it is apparent that the two

instruments track each other well--i.e., the shapes are similar; however, SBUV layer amounts
are systematically lower than the corresponding SAGE-II layer amounts.

To reduce the large seasonal variability seen in Figures 5.6 through 5.11, the cluster means are

averaged over an integral number of years. The 24-month averages are presented in Figure 5.12

as a function of latitude for the four Umkehr layers for the SAGE-I period, October 24, 1979, to

October 23, 1981, and for the SAGE-II period, October 24, 1984, to October 23, 1986. Figure 5.12
shows that the latitudinal variation is similar for both the SAGE-I and SBUV instruments, with

SBUV zonal ozone greater than SAGE-I at all levels other than 6. These same latitudinal

variations are also evident in the SAGE-II/SBUV comparisons; however, a larger consistent bias

exists at all latitudes with SBUV averages lower than SAGE-II zonal averages.
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Figure 5.12 Time average of the cluster means. The averaging period for SAGE-I was October 24, 1979, to
October 23, 1981. The averaging period for SAGE-II was October 24, 1984, to October 23, 1986. The
corresponding SBUV data were similarly averaged. The vertical bars are the standard error of the mean of the
cluster means. The sizes of the error bars reflect the seasonal ozone variability.
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The latitudinal cluster-mean averages of the SBUV data show a decrease at all levels except 6

between the two periods at all latitudes. Any apparent differences between SAGE-I and

SAGE-II are accentuated by the fact that their corresponding cluster means were not "paired";

hence, seasonality may affect the differences. The same holds for the SBUV (1979-1981) and

SBUV (1984-1986) cluster-mean averages.

5.3.5 Difference Between SAGE-I and -II and SBUV Pairs

To quantify the information contained in the time series of the previous section, averages of
the cluster-mean percentage differences are computed. Figure 5.13 displays the differences
between SAGE-I/SBUV and SAGE-II/SBUV, with SBUV as the reference. The percentage

differences are essentially constant across the latitudes, and the means are almost always

significantly different.
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The cluster-mean differences presented in Figure 5.14 were averaged in latitude and are
shown in Figure 5.15. In this figure, the SBUV ozone layer amounts are greater on average than

the SAGE-I amounts in layers 7 to 9 by about 4 to 5 percent and are smaller than the SAGE-I

amounts in layer 6 by 4 percent. Much larger differences are found between SAGE-II and the

SBUV layer amounts in these four layers, with SBUV lower by between 6 to 11 percent.

Because of seasonal sampling differences, the averaging process used to produce Figures 5.13

and 5.14 should not be used to compare SAGE-I with SAGE-II, nor SBUV (1979-1981) with

SBUV (1984-1986). A method that reduces seasonal and spatial biases selects sets of profiles in

which SAGE-I and SAGE-II sample the same month of the year within the same latitude band.
Such a period of time is called an "intersection" and is defined to be a period of time in the year, of

approximately 1 month's duration, during which both SAGE-I and SAGE-II sampled the same

latitude band. It should be noted that an intersection is independent of the actual year during

which measurements were made; it is defined strictly in terms of the month within the year.

Within the 13 latitude bands being considered, 102 intersections were isolated such that both

halves of the year were equally represented. The SAGE-I and SAGE-II profiles were averaged
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The horizontal bars are the 95 percent confidence interval of the time average.
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Figure 5.15 Averages of the percentage difference between the cluster means of SAGE-II and SAGE-I
(SAGE-I the reference) or SBUV (1984-1986) and SBUV (1979-1981) (SBUV 1979-1981 the reference).
Percentage differences were computed at SAGE-I and SAGE-II intersections. For each latitude band there
were approximately eight intersections and thus eight percentage differences that were averaged to produce
one point on the graph. The vertical bar represents twice the standard error of the mean percentage
difference and reflects only the variation between the eight percentage differences in the latitude band.

for each intersection. The percentage difference between the SAGE-II mean and the SAGE-I

mean was computed within each intersection. The SAGE-I mean was taken as reference. The

SBUV (1979-1981) and SBUV (1984-1986) profiles were processed in a fashion analogous to the

SAGE-I and SAGE-l] profiles. SBUV (1979-1981) was used as reference for the percentage

calculations. As in Figure 5.13, percentage differences are displayed as a function of latitude in

Figure 5.15. Again, there is only slight variation in the differences with latitude. The percentage

differences are averaged in latitude and are presented as a function of Umkehr layer in Figure

5.16. It should be noted, in Figure 5.16, that the magnitude of the difference between SBUV

(1984-1986) and SBUV (1979-1981) steadily increases from approximately 3 percent at layer 6 to

16 percent at layer 9. However, the differences between SAGE-l] and SAGE-I remain relatively

constant and are less than 2 percent.
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Figure 5.16 Latitudinally averaged mean percentage difference between SAGE-II and SAGE-I (SAGE-I
the reference) or between SBUV (1984-1986) and SBUV (1979-1981 ) (SBUV 1979-1981 the reference).
The horizontal bars represent twice the standard error of the mean percentage difference.

The differences between Figures 5.13 and 5.15 and between Figures 5.14 and 5.16 are a result

of different sampling criteria. Figures 5.13 and 5.14 include all two-way coincidences between
SAGE-I or SAGE-II and SBUV. Figures 5.15 and 5.16 include three-way coincidences: SAGE-II

with seasons and latitude corresponding to SAGE-I but 5 years apart, and with SBUV.

5.3.6 Changes in SAGE-I to SAGE-II at Geometric Altitudes

The previous comparisons between SAGE-I and SAGE-II involved the Umkehr-layer

amounts and were designed to compare SAGE-I and -II with SBUV observations. The con-

version to Umkehr-layer amounts is not necessary when comparing SAGE-I and SAGE-II alone.

In the following development, the fundamental SAGE measurements are used; that is, the

SAGE-I and -II concentration profiles are defined in terms of geometric altitude, ranging from 25

km to 50 km. Again, only profiles corresponding to the SAGE-II and SAGE-I intersections are

used. The cluster percentage differences are averaged in time within 10-degree-latitude bands

and plotted against altitude in Figure 5.17. The magnitude of the differences is only on the order
of 5 percent. Because of small sample sizes, these comparisons are noisy. With some notable

exceptions at high altitudes and also near the Equator, the prevailing pattern is an ozone

decrease in the upper stratosphere and another decrease near 25 km between 1980 and 1986.
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Figure 5.17 Mean percentage difference between SAGE-II and SAGE-I at the geometric altitudes of
SAGE (SAGE-I is the reference). For each latitude band approximately eight intersections were available
from which to compute percentage differences. The average percentage difference along with its standard
error are plotted. The standard error reflectsonly the variation between the eight percentage differences in a
given latitude band.
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The identical analysis is performed using two wider latitude bands: 20°N to 50°N and 20°S to
50°S, an area over which there is relatively dense sampling. The mean percentage differences

appear in Figure 5.18. The agreement between the two hemispheres is apparent, with the

magnitude of the ozone change from SAGE-I to SAGE-II being less than 5 percent at any

altitude. Between 35 km and 45 km there is an ozone-reduction profile with a maximum ozone

reduction of about 3 percent centered at 40 km, at about 30 km there is zero change, at about 50

km there is zero ozone change (unlike SBUV), and, near 25 km, there is another region of ozone

reduction. As in the previous analyses using Umkehr layer amounts and considering potential

systematic errors, the SAGE-I and -II measurements do not support a large decrease in global

stratospheric ozone above 25 km.

5.4 SOLAR BACKSCATTER ULTRAVIOLET II (SBUV-2)

The National Oceanic and Atmospheric Administration (NOAA)-9 satellite with the SBUV-2

instrument package onboard was launched on December 12, 1984 (Oslik, 1984). While some

instruments on NOAA-9 are no longer operating, the SBUV-2 is still sending data back on a

daily basis. The SBUV-2, while similar to the SBUV, is different, as shown in Table 5.4.

[SAGE II (10/84-9/87)- SAGE I (2/79-11/81)]/SAGE I
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Figure 5.18 Mean percentage difference between SAGE-II and SAGE-I at the geometric altitudes of
SAGE (SAGE-I is the reference). All intersections occurring between 20°N to 50°N (or 20°S to 50°S) were
combined into one sample. The percentage difference at each intersection was computed. These percentage
differences were averaged and plotted for each altitude. The sample standard error was also computed and
plotted as the horizontal bar at each point. Within each hemisphere, approximately 2,500 SAGE-I profiles
and 6,000 SAGE-II profiles were used in computing the statistics.
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Table 5.4 Comparison of Important Features Between SBUV-2 and SBUV

Features SBUV-2 SBUV

Monochromator mode

Control of monochromator

Scene mode

Diffuser position

Mercury Lamp position

CCR wavelength

Shortest wavelength of dis-
crete mode (other 11 wave-

lengths match)

Wavelength calibration

steps

Electronic calibration

Scanning
discrete mode

sweep mode

Sampling time
discrete

sweep
Diffuser check

Diffuser Decontamination

Gain Range

IFOV

Discrete (step scan) scan-

ning direction

4 (discrete, sweep, wave-
length, and position)

FIX System; FLEX system

mode (wavelengths can be

changed by command)

4 (Earth, Sun, wavelength
calibrate, diffuser check)

4 (stow, Sun, wavelength
calibration, or diffuser check

& decontamination)

2 (stowed and deployed)
379 nm

252 nm (in FIX system)

12

Every scan in retrace

32 sec
192 sec

1.25 sec

0.1 sec

Yes

Yes

Two from PMT anode 1
from PMT cathode

11.3 x 11.3 degrees

From short to long

wavelengths

4 (step, continuous, wave-
length and cage [cam])

One fixed system

2 (Earth and Sun)

2 (stow and Sun)

1

343 nm

255.5 nm

5

By command

32 sec

112 sec

1 sec

0.08 sec

No

No

Three from PMT One from

ref. diode

11.3 x 11.3 degrees

From long to short

wavelengths

SBUV data show a surprisingly large decrease of stratospheric ozone, especially in the upper

stratosphere, from 1978 to the present (Heath, 1986), but the Algorithm and Calibration

subgroups of the Trends Panel suggest that the apparent decrease could be due in whole or in

part to degradation of the reflector plate in the SBUV system. SBUV-2 takes the same great

volume and the same kind of data as SBUV, and has the same flight pattern. The most powerful

method of verifying, modifying, or disproving the SBUV-reported trends would be to compare
at least two aspects of SBUV and validated SBUV-2 data: 1) the ozone magnitudes reported by

the twin instruments immediately after launch (if SBUV-2 is consistently higher than SBUV,

then the ozone decrease shown by SBUV is probably correspondingly in error) and 2) a

systematic difference between the first 2 years of SBUV and the corresponding 2 years of SBUV-2

to get a good estimate of how much ozone has changed over the intervening period. The other
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sections of the report of this subcommittee of the Trends Panel have intercompared upper
stratospheric SBUV data with those of other satellites or ground-based instruments, which
measure different ozone properties, make far fewer ozone measurements, and cover different

spatial trajectories than the SBUV instrument. This procedure is more indirect and less revealing
than the direct comparison between the two twin, overlapping, SBUV instruments would be.

Using a convenient but inappropriate algorithm, SBUV-2 data have been analyzed and saved
since April 1985. These data show seasonal variations similar to those of SBUV, but, in view of

known deficiencies of the algorithm used to process the data, no quantitative use is made of

these data (Nagatani and Miller, 1987). This subcommittee of the Trends Panel issued requests

between April 1987 and July 1987 for the SBUV-2 reinterpreted data. NOAA scientists began to

reinterpret the SBUV-2 data in September 1987, using an appropriate algorithm. The newly
processed data for August 1985 were issued in preliminary form in late 1987. The differences

between SBUV-2 and SBUV data are positive throughout. The aging SBUV instrument reports

less ozone than the newly launched twin instrument, indicating that the older instrument had
degraded more than it was believed to have in 1986 (Heath 1986). However, the SBUV-2 data

were so preliminary at the time of this report that they were not used. These have since been

discussed in a recent report (Ohring et al., 1989).

The national plan for monitoring stratospheric ozone is to use Dobson stations and SBUV

satellites as mutually interactive systems, to send up another SBUV instrument about every 2

years, and to establish calibration continuity between successive instruments by studying
overlapping measurements.

SBUV-2 was launched 2 months after SAGE-II in 1984. The differences between SAGE-I and

SAGE-II are at least as great as those between SBUV and SBUV-2. Although it is not SAGE's job

to monitor stratospheric ozone, the SAGE team made a great effort to reinterpret all the SAGE-I

and SAGE-II ozone data in about 6 months; they produced the meaningful account given in
Section 5.3. It is the job of the National Environmental Satellite, Data, and Information Service

(NESDIS) of NOAA to monitor stratospheric ozone using SBUV satellites and Dobson ground-

based stations. Although January 1988 is more than 3 years since SBUV-2 was launched, the

NOAA team said in January 1988 that the SBUV-2 data were not interpreted well enough to go
into this report.

5.5 UMKEHR MEASUREMENTS OF UPPER STRATOSPHERIC OZONE

5.5.1 Comparison of Upper Stratospheric Umkehr Ozone Patterns With SBUV Observations
at the Same Time and Place

Eight years' worth of archived data from the SBUV were collocated in time and space with all
of the Umkehr station reports available as of July 1987 from the World Ozone Center. The criteria

for matching were that SBUV and groundstation data be from the same day, and that the center
of the SBUV field of view be within 1 degree of latitude and 10 degrees longitude of the station.

For this study, 11 stations were selected to provide the greatest temporal coverage over the

7-year period: Kagoshima (31.6°N), New Delhi (28.6°N), Sapporo (43.1°N), Tateno (36.1°N),

Arosa (46.8°N), Boulder (40.0°N), Belsk (51.8°N), Lisbon (38.8°N), Perth (31.9°S), Poona (18.5°N),

and Naha/Kagamizu (26.2°N).
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As discussed in the algorithm chapter of this report, the Umkehr gives its best ozone results

in layers 4 to 8 to a vertical resolution of about 2.5 layers (12 km); the SBUV provides information

for layers 6 to 9 with a vertical resolution of 10 km. Layers 6 to 8 are presented in this comparison.

Sample data for the Tateno station are shown for Umkehr layers 6, 7, and 8 in Figures 5.19 to
5.21. In each case, the upper panel gives the collocated SBUV ozone measurements in Dobson

units, and the lower panel gives the corresponding Umkehr data. Both methods show the large
seasonal variations of ozone. The SBUV data are less noisy than those obtained by the Umkehr

method. From 1982 to 1983, Umkehr layer 8 shows a strong downward perturbation by the E1

Chich6n volcano, and levels 6 and 7 show a smaller volcanic effect. These SBUV data show no

conspicuous effect of El Chich6n, but, in Figure 5.1, SBUV showed a 9 percent decrease in layer 6
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Figure 5.19 Direct presentation of ozone observations (Dobson units) from the Umkehr station at Tateno
(36°N) in the lower panel and collocated SBUV ozone observations in the upper panel from 1979 through
1986 for Umkehr layer 6.
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Same as 5.19, except for Umkehr layer 7.

late in 1982, presumably caused by E1 Chich6n. The Umkehr method must look up through the

volcanic cloud to observe layers 6 to 8, but the SBUV system looks down; these layers lie largely

(but not entirely) above the volcanic cloud. In the upper panels of Figures 5.19 to 5.21, the SBUV

data show a clear-cut decrease over the 8 years in levels 7 and 8, and perhaps a slight decrease in
level 6. A comparison of the early years with the last years of the Umkehr data shows a distinct

ozone decrease, but the trend is confused by the effects of El Chich6n during the middle years.

Another way to compare the collocated SBUV and Umkehr data visually is to plot the ratio,

Umkehr-SBUV, against time at layer 8 for all 11 Umkehr stations (Figure 5.22). El Chich6n

erupted in month 40 on this plot. By taking ratios, the seasonal variations are largely removed. If

this ratio is parallel to the time axis throughout the period, the Umkehr station is in agreement

with the SBUV overflights in trend. Flaws in the data include noise in the ratio, sparsity of data

and gaps of data at some stations, and the effect of E1 Chich6n. For those stations with a large

414



OZONE PROFILE MEASUREMENTS

15

13 -

E 11-
v

I-
< 9 -

7 -

5
78

15

13

Ell

7

SBUV OZONE OVER TATENO (36.1 N)

I [ I I I I 1 I |

LAYER 8

79 80 81 82 83 84 85 86 87

YEAR

UMKEHR OZONE TATENO (36.1 N)

[ I I I I I I I

LAYER 8

i
5 I I 1 I I I 1 I

78 79 80 81 82 83 84 85 86 87

YEAR

Figure 5.21 Same as 5.19, except for Umkehr layer 8.

density of points, visual comparison of the Umkehr-SBUV ratio during the first and the last year

appears to show Umkehr ozone to be larger than that for SBUV by 5 to 10 percent. The decrease
of ozone at this Umkehr layer, indicated by the collocated SBUV, is 15 percent; thus, this visual

comparison indicates that the ozone decrease seen by Umkehr is less than that seen by SBUV

over this period.

A time series statistical analysis was carried out for the SBUV trend shown for observations
coincident with each Umkehr station (omitting Boulder) and for the bias, SBUV-Umkehr. To

minimize the effect of E1 Chich6n in the comparison, all Umkehr measurements for 36 months

after the eruption of E1 Chich6n were eliminated from the regression. This means that Umkehr

comparisons are based on only 5 years of data: 3.5 years of data before the eruption, and only 1.5

years of data after the 3-year gap.
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Figure 5.22 Ratio of Umkehr ozone measurements in layer 8 to collocated SBUV measurements for 7
years after launching of SBUV in November 1978. Eleven Umkehr stations are included.
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In order to remove residual seasonal variation remaining in the bias and to derive the drift

between the long-term trend of the two time series, a linear regression model was fit to the

percent difference, h = SBUV-Umkehr, such that:

A=

t=
b=

d

b + dt + alcos2_t + a2sin2_Tt + a3cos4_t + a4sin41Tt.

100 x (SBUV-Umkehr)/SBUV.

time in year measured from November 1, 1978, the starting day of SBUV measurements.

intercept of the regression line at t = 0, representing the bias (systematic difference)
between SBUV and Umkehr.

drift between SBUV and Umkehr (percent per year).

The annual and semiannual terms were included to model second-order seasonal effects in

the SBUV-Umkehr difference. The regression model was fit individually to the data in each layer
from each station, and an estimate of the drift (d) for the network was computed along with its 95

percent confidence interval. The results of the individual stations were combined using a

weighting function proportional to the number of observations and inversely proportional to the
square of the standard deviation. The change in SBUV ozone was estimated using the same

regression model (described above) applied to the coincident SBUV data. Table 5.5 shows the

8-year drift of SBUV relative to the Umkehr network, the total change in SBUV over the Umkehr

network, and the change in Umkehr computed using the SBUV as a transfer standard. The 95

percent confidence intervals (not including possible systematic errors) are included in the table.

Table 5.5 SBUV Trend Collocated With 11 Umkehr Stations, the Trend of the Difference

(SBUV-Umkehr), and the Derived Umkehr Trend for 1979 to 1986

Trends are expressed as percent change in 8 years (95 percent confidence level). No corrections
are made for aerosols except to omit 3 years of data after eruption of E1 Chich6n. Compare with

line (B) in Table 5.7
% ozone change in 8 years

Quantity Layer 6 Layer 7 Layer 8

SBUV -7 + 1 -12 _+_1 -15 + 2

(SBUV-Umkehr) -5 + 3 -3 - 3 -5 -+ 4
Umkehr -2.4 _+ 2.6 -9.6 + 3.3 -10.4 -+ 4.3

This method of reducing the effect of E1 Chich6n aerosols on the Umkehr network is regarded

as insufficient, and the problem of correcting for aerosols is considered in the next section.

5.5.2 An Analysis of Northern Midlatitude Umkehr Measurements Corrected for
Stratospheric Aerosols for 1979 to 1986

5.5.2.1 Introduction

This section is based on a report by DeLuisi et al. (1983), some of which is directly quoted
here. This report is also discussed in Chapter 10, and that discussion is not repeated here.

Umkehr observations of ozone profiles have been used in a variety of ways to assess

characteristics, variations, and trends in ozone concentration in the upper stratosphere (e.g.,

Bojkov, 1969a; Angell and Korshover, 1983b; Reinsel et al., 1984; and others). They have also been
used for comparison with ozone profile data from other observational methods such as ozone-
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sondes, satellite, and lidar (Craig et al., 1967; DeLuisi and Mateer, 1971; DeLuisi and Nimira,

1977; DeLuisi et al., 1979; DeLuisi et al., 1985; Megie et al., 1985, and many others). Moreover,

they are the observations that revealed a serious drift in the sensing of upper stratospheric ozone

by the SBUV (Fleig et al., 1981).

It is well known that the Umkehr is affected by the presence of stratospheric aerosols

(DeLuisi, 1969 and 1979; Dave et al., 1979) that act as additional scatterers and attenuators not

included in the present inversion algorithm for ozone profiles (Mateer and Dtitsch, 1964). The

empirically derived errors are well matched by the theoretical calculations of Dave et al. (1979),
who accounted for multiple scattering and atmospheric sphericity. In principle, an observed

aerosol profile using lidar can be used to calculate the error to a concurrent Umkehr observation

(see Chapter 10).

5.5.2.2 Procedure

Monthly averages of lidar aerosol profile data from Langley, VA; Boulder, CO; Aberystwyth,
Wales; Haute Provence, France; and Garmisch-Partenkirchen, F.R.G., were used in a radiative

transfer computer code developed for the previous work of Dave et al. (1979). The aerosol size
distribution was selected from a collection of samples made by NASA/Ames U2 flights to the

interior of the El Chich6n cloud (Oberbeck et al., 1983). The radiative transfer code requires

realistic midlatitude ozone profiles that vary with season. The ozone profile data used in these

calculations were supplied from the work of Tiao et al. (1986).

The radiative transfer code by Dave et al. (1979) was used to compute an Umkehr with

stratospheric aerosols and an Umkehr without stratospheric aerosols. The difference between
the Umkehr with stratospheric aerosols and the corresponding one without is called the
"Umkehr error."

5.5.2.3 Results and Discussion

Figure 10.22 is a plot of monthly average stratospheric aerosol optical thickness vs. time
derived from the lidar observations. The results of the aerosol observations and calculated ozone

profile errors (Figure 10.21) are used to correct Umkehr measurements from five stations in the
northern midlatitudes. These stations are Belsk, Poland; Arosa, Switzerland; Lisbon, Portugal;

Boulder, CO; and Tateno, Japan (compare Figure 5.22). These stations were chosen solely on the

basis of their higher frequency of measurements compared to other stations. Data are analyzed
in terms of monthly averages, from 1979 to 1986, of the five Umkehr stations.

The monthly average Umkehr errors (the corrections to be applied to the data) and the lidar

optical depths are given over the 8-year period in Table 5.6. The maximum optical thickness of

0.113 occurred in January 1983, and the maximum corrections for aerosols were - 4.6 percent for

layer 6, - 14.7 percent for layer 7, and - 26.0 percent for layer 8. For layer 7, for example, the
corrections were about -0.5 percent in 1979 and -2 percent in 1986, showing less than total

recovery from E1 Chich6n even in 1986.

One check on the corrected Umkehr data is to take Figure 5.11, which gives the time series of the

SAGE-II and SBUV cluster mean at 40°N, and to insert the corrected Umkehr data on the plot, as

in Figure 5.23. The SAGE-II and SBUV data are the zonal average of the matched clusters; the
Umkehr data are from the Tatena, Arosa, Belsk, and Lisbon stations. The Umkehr data show the

same seasonal trends at all layers as those shown by SAGE-II and SBUV, including the opposite
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Table 5.6 Corrections for Aerosols Applied to Umkehr Data on the Basis of Lidar Measurements
and DeLuisi's Model

The values are the calculated percentage error due to aerosols in the monthly average ozone

reported for the stations Tateno, Arosa, Boulder, Belsk, and Lisbon at Umkehr layers 6, 7, and 8.

"Tau" is the aerosol optical thickness as determined by lidar.

Month Year Layer 6 Layer 7 Layer 8 Tau

JAN 1979 -0.4 -0.8 -0.4 0.001
APR -0.2 -0.3 -0.5 0.001

JUL -0.2 -0.6 -0.9 0.002
OCT -0.3 -0.8 -0.3 0.001

JAN 1980 -0.1 -0.5 -0.8 0.002
APR -0.3 -0.6 -0.8 0.002

JUL -0.1 -0.7 -I.9 0.008
OCT -0.1 -1.0 -1.3 0.006

JAN 1981 0.0 -0.2 -0.8 0.003
APR -0.2 -0.6 -0.9 0.002

JUL 0.0 -1.0 -2.4 0.006
OCT -0.5 -1.8 -1.5 0.004

JAN 1982 -0.1 -0.2 -0.9 0.005
APR -0.8 -1.9 -2.2 0.010

JUL -0.4 -2.7 -7.2 0.022
OCT -0.8 -5.1 -15.1 0.044

JAN 1983 -4.6 -14.7 -26.0 0.111
APR -1.9 -7.0 -14.8 0.081

JUL -0.9 -6.0 -12.5 0.050
OCT -0.3 -5.3 -8.7 0.036

JAN 1984 -0.7 -2.6 -6.7 0.029
APR -0.6 -2.2 -6.3 0.022

JUL -0.3 -2.2 -4.5 0.013
OCT -0.4 -2.3 -3.6 0.013

JAN 1985 -0.5 -1.2 -3.8 0.013
APR -0.3 -0.7 -3.5 0.011

JUL -0.1 -1.1 -2.9 0.008
OCT -0.2 -1.7 -2.7 0.009

JAN 1986 -0.4 -0.7 -2.4 0.007
APR -0.1 -0.3 -2.4 0.007

JUL -0.7 -1.9 -3.1 0.011
OCT -0.5 -2.3 -3.4 0.009
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Figure 5.23 Aerosol-corrected Umkehr observations (Arosa, Belsk, Lisbon, and Tateno) plotted as a
function of time in comparison with zonal average SAGE-II and SBUV data at 40°N latitude. This figure is a
copy of Figure 5.11 with the Umkehr data added.

phases at layers 6 and 7 relative to layer 9. In absolute value, Umkehr agrees very well with

SAGE-II in layers 6 and 9, the agreement is good in layer 7, and, in layer 8, Umkehr parallels

SBUV better than SAGE-II parallels SBUV (layer 8 is in the transition region between the

out-of-phase layers 7 and 9, and comparisons here are strongly dependent on details of

sampling). This good agreement between the time series data of Umkehr and the satellites is not

necessarily evidence for the validity of the aerosol correction factors for Umkehr, since these
corrections are already small for the data in this figure (compare Table 5.6).

For 1979-1986, the uncorrected Umkehr data and the corresponding corrected Umkehr data

are plotted for layers 6, 7, and 8 in Figures 5.24 to 5.26. The uncorrected data show a notable
decrease between mid-1982 and mid-1983. The correction removes most of the anomaly, but the

final values remain lower at the end of the record compared to the beginning. If one examines the

long-term features in these figures, it is obvious that the ozone in layers 7 and 8 tends toward
lower values.
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Figure 5.24 Plots of monthly average ozone concentration vs. time in Umkehr layer 6 for five Umkehr
stations for precisely 7 years, including 1979 through 1986. Data were supplied courtesy of the World Ozone
Data Center in Toronto. The data in the upper panel data have not been corrected for stratospheric aerosol
error. Note the error effects of El Chich6n during the winter of 1982-1983. The data in the lower panel have
been corrected for aerosols by DeLuisi et al. (private communication, 1988). The least-squares lines are:
Solid line includes all 7 years of data; Solid-dashed-solid line omits precisely the 3 years 1982, 1983, and
1984.
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Figure 5.25 Same as 5.24, except it is for layer 7.
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For each of the six panels of these figures, there are two lines. The solid line is simply a linear

least-squares fit of all the data (including seasonal cycles) from January 1, 1979, through

December 31, 1986. The other line is similar, including the data from January 1, 1979, through

December 31, 1981, omitting data from January 1, 1982, through December 31, 1984 (the El

Chich6n eruption occurred in the spring of 1982), and including data from January 1, 1985,

through December 31, 1986. All 12 lines show an ozone decrease between 1979 and 1986. In any

one figure, the slope of the line including 8 years of data and the slope of the line omitting 3 years

of data (mostly after E1Chich6n) appear to be about the same. These slopes are given in Table 5.7.

In all cases, the decreasing slope is less steep when aerosol corrections are made; the greatest

difference, occurring in layer 8, is -12.6 percent without correction and -8.7 percent with
correction. In each case, the slope for the full 8 years is close to that with 3 years of data removed

(1982, 1983, and 1984). For Umkehr layers 6, 7, and 8, the ozone change over the 8-year period

(including aerosol correction)is-3.1, -8.5, and-8.7 percent, respectively. SBUV reports ozone

changes of about -5, -10, and -15 percent at these altitudes. The maximum ozone change shown

by SAGE-I and SAGE-II is about -3 _+ 3 percent at Umkehr layer 8 with an estimated systematic
error of + 2 percent.

Table 5.7 Linear Least-Squares Ozone Trends in Umkehr Layers 6, 7, and 8 From January 1,
1979, to December 31, 1986

Trends were derived from four different ways of treating the data: (A) All data, uncorrected

for aerosols, (B) Excluding data from January 1, 1982, to December 31, 1984, uncorrected for
aerosols, (C) All data, corrected for aerosols, (D) Excluding data from January 1, 1982, to

December 31, 1984, corrected for aerosols. Percent change over the 8-year period. Compare

Figures 5.23 to 5.25.

Aerosol Years % ozone change in 8 years

correction excluded Layer 6 Layer 7 Layer 8

(A) Uncorrected -3.5 -10.0 -12.6

(B) Uncorrected 1982, 1983, 1984 -3.5 -9.7 -11.4

(C) Corrected -3.1 -8.5 -8.7

(D) Corrected 1982, 1983, 1984 -3.2 -8.8 -8.9

Simple visual inspection of the Umkehr figures or examination of the least-squares slopes

presented in the figures shows that the five north midlatitude Umkehr stations give an ozone
reduction in the upper stratosphere smaller than that indicated by SBUV and greater than that

given by SAGE-I and -II. The next section examines the problem of error estimates of the
Umkehr data.

5.5.3 Error Estimates for the Umkehr Trends

5.5.3.1 Sensitivity to Assumed Particle Size Distribution

One uncertainty in calculating the aerosol corrections is the size distribution of the particles.

A sensitivity study was made using three different size distributions (including two extreme

cases) for each of three different periods (Table 5.8). Where the corrections are large, the

two-sigma spread of the correction due to extreme variations in assumed size distributions is

about 20 percent of the correction itself--4.6 percentage units out of 21.5---and the average of the

three extreme distributions is not largely different from the preferred distribution based on
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observed aerosols. The correction for aerosols is not highly dependent on the aerosol size
distribution used.

Table 5.8 Sensitivity Study of the Effect of Three Different Assumed Size Distributions for

Aerosols: The Distribution Function Based on Observed Aerosols and Two Widely
Different Arbitrary Distributions

The mean Umkehr error or the calculated aerosol correction factor is given in percentage units,

and twice the standard deviation of the three correction factors is given in the same percentage
units. The second set of three values gives the Umkehr error based on the preferred distribution
function that was used. The optical thickness is _.

Mean Umkehr error + 2o ( % )

Date _/ Layer 6 Layer 7 Layer 8

December 1982 0.087 -1.5 + 1.0 -9.4 + 3.8 -21.5 + 4.6

August 1983 0.041 -1.1 + 0.4 -6.4 _ 2.0 -10.4 + 2.4
December 1985 0.008 -0.3 _+ 0.2 -0.9 _+ 0.2 -2.3 + 0.8

Corresponding values for the preferred distribution function

Layer 6 Layer 7 Layer 8

December 1982 0.087 -2.1 -10.3 -23.3

August 1983 0.041 -1.4 -7.4 -11.6

December 1985 0.008 -0.3 -1.1 -2.6

5.5.3.2 Sensitivity to Choice of Umkehr Stations

There is one common condition under which a comparison can be made between a 5-station

Umkehr network and an ll-station Umkehr network. The last line of Table 5.5 is to be compared

with line (B) of Table 5.7. These results are for uncorrected Umkehr data with 3 years omitted to

minimize the effect of El Chich6n for the 11-station study (Wellemeyer, private communication,

1987) and the 5-station study (DeLuisi et al., private communication, 1988), respectively. For the

three Umkehr layers, 6, 7, and 8, these two analyses give, respectively, the 8-year ozone changes

(-2.4, -3.5), (-9.6, -9.7), and (-10.4, -11.4). The maximum difference is 1.1 percentage point. The

weighting factors used to combine the stations give low weight to the sparse, noisy cases shown
in Figure 5.22, and the entire network gives ve D, nearly the same trends as the five stations with
the largest density of observations.

Another sensitivity test was to compare results using the five stations with the results found
by eliminating either Lisbon or Boulder. Essentially the same results were reached, with or
without Lisbon or Boulder.

5.5.3.3 Estimated Trend Error Due to Uncertainty in the Aerosol Correction Algorithm

There is a line of argument that gives insight into the magnitude of the aerosol error. A

comparison of the corrected and uncorrected Umkehr time series in Figures 5.24 to 5.26 at the

time of maximum aerosol correction (January 1983) suggests that the correction at layer 8 may be

too large. One may take as the uncertainty due to aerosols one-half the spread between applying
and not applying the correction used here. In percentage points, the full spread between the

8-year ozone decrease, with and without any aerosol correction, is
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Figure 5.26 Same as 5.24, except it is for layer 8.
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-3.1 to -3.5 at layer 6

-8.5 to -10.0 at layer 7
-8.7 to -12.6 at layer 8 (Table 5.7).

With these assignments, the ozone decreases over the 8-year period, including errors just for
uncertainty in the aerosol corrections, are

-3.1 _+_0.2 at layer 6

-8.5 + 0.8 at layer 7

-8.7 + 2.0 at layer 8.

5.5.3.4 Statistical Errors

Pending an analysis of the statistical errors of the aerosol-corrected Umkehr trends (Table

5.7), the statistical error estimates from the uncorrected ll-station study (Table 5.5) are
adopted for the aerosol-corrected trends. This approach may overestimate the error for the five

stations selected for their high density of observations, since it includes the stations with sparse

and noisy data (Figure 5.22). However, the sparse, noisy data are given low weight by the N/_ 2
weighting function. The estimated random errors are then:

+ 2.6 percent at layer 6

-+ 3.3 percent at layer 7

+ 4.3 percent at layer 8.

5.5.3.5 Sampling or Systematic Error

For the five midlatitude stations used in this section, the average reduction of total ozone (as

found by local Dobson measurements) across the 8-year period is 6.6 percent, whereas the

average value for the renormalized Total Ozone Mapping Spectrometer (TOMS) data at com-

parable latitudes is 3 or 4 percent (Chapter 4). In the Umkehr method, ozone values reported at

layers 6 to 8 are based on features of the observations that are not strongly dependent on total

ozone, and a sampling difference in total ozone may make no difference in the upper strato-
spheric profile. If the large change in total ozone is caused by drift in calibration, then the

reduction of ozone reported in the upper stratosphere is probably overestimated. At present,
this possible error is not quantified.

5.5.3.6 Central Values and Combined Aerosol and Statistical Error Estimates

The central values of the Umkehr trends are taken to be those corrected for aerosols,

including the full 8 years of data (line (C) of Table 5.7). The (95 percent confidence level)

statistical error estimates (Section 5.5.3.4) are combined (root sum of squares) with the estimate

of the maximum aerosol errors (Section 5.5.3.3). The 8-year ozone changes derived from
Umkehr, rounded to the nearest percentage point, are regarded as:

-3 + 3 percent at layer 6

-8 + 4 percent at layer 7

-9 + 5 percent at layer 8.

These error estimates do not include the effect of possible systematic errors besides aerosols.
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5.6 SBUV, SAGE-I, AND LIMS OZONE INTERCOMPARISON (SPRING 1979)

The purpose of this study is to examine quantitatively the degree of consistency in strato-

spheric ozone measurements from three satellite instruments, SBUV, SAGE-I, and LIMS, which

were operating at the same time during spring 1979 (Gille and Russell, 1984; Remsberg et al.,

1984). The analysis is an intercomparison of the ozone data from these instruments in terms of

ozone column abundance in four Umkehr layers (6 to 9). In the case of SAGE-I and LIMS, it is

necessary to convert their primary measured ozone quantities to ozone Umkehr layer amount for
comparison purposes. Since the sampling locations of the SAGE-I instrument are distributed in

a narrow latitudinal belt for a 24-hour period, as opposed to the nearly global observations of the
SBUV and LIMS for the same period, the comparison analysis is carried out by following the

SAGE-I latitudinal sampling progression. Because the three satellite instruments never sampled

at the same locations and times, the comparison is made in terms of the zonally averaged ozone

layer amount in these Umkehr layers. The ozone data from SBUV are from the version 5 retrieval,

the SAGE-I ozone data are a recently revised product (Chapters 2 and 3), and the LIMS data are

the combined mode zonal mean coefficients from the LIMS Map Archival Tapes (LAMAT).

The SAGE-I instrument takes 15 sunrise and 15 sunset measurements per day, which are

distributed almost evenly in the longitudinal direction along a nearly constant latitude circle. The

mean value derived from these 15 sunrise/sunset SAGE-I daily measurements represents the
zonal mean for that day. The corresponding daily zonal means of SBUV and LIMS were obtained

by interpolation with latitude. Table 5.9 gives the latitudinal progression of the daily SAGE-I

data for both sunrise and sunset measurements during spring 1979.

Table 5.9 The Beginning and Ending Dates (in 1979) and Latitudes of Four Cases of Longitudinal
Progression of the SAGE-I Observations

Begin End
SAGE-I Date Latitude Date Latitude

1 Sunrise March 2 57.1°N March 31 55.4°S
2 Sunset March 2 37.3°S March 21 64.0°N

3 Sunrise April 6 57.7°S April 29 41.8°N

4 Sunset April 1 50.7°N April 28 51.8°S

For the cases of March 1979 sunrise and of April 1979 and SAGE-I sunset, the zonal mean

ozone layer amounts are given in Figures 5.27 and 5.28. The standard deviation of the SAGE-I
instrument about its zonal means, shown by the vertical bar, is less than 10 percent except at high

latitudes. The standard deviation for LIMS about its zonal mean is about 4 percent, and that for

SBUV is about 2 percent. The three satellite systems show the same pattern with latitude. The

same data are presented in Figures 5.29 and 5.30 as the deviation of each instrument against the

mean of the three. The results displayed in these two figures show that SBUV data are about 3

percent systematically lower than the other instruments in layer 6, but not systematically
different from the other satellite instruments in layers 7, 8, and 9.

For each of the three satellite instruments, the four Umkehr layers, and the four times, the

root-mean-square deviation from the average of the three instruments is given in Table 5.10. For

15 of 48 entries in the table, the deviations are less than 3 percent; for 23 of 48 entries the

deviations are between 3 percent and 5 percent; and for 10 of 48 entries the deviations are greater

than 5 percent but less than 10 percent. These data give an example of how closely three totally
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Figure 5.27 Comparison of zonal mean ozone layer amount calculated from the SBUV, SAGE-I, and LIMS
observations for the case of March 1979 SAGE-I sunrise (Table 5.9).
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different, newly launched satellite systems agree with each other in measuring zonal mean

ozone amounts in the four Umkehr layers in the middle to upper stratosphere (about 4 percent).

Table 5.10 Estimated Overall Percentage Differences of the Calculated Zonal Mean Ozone Layer
Amount of SBUV, SAGE-I, and LIMS With Respect to the Average of These
Instruments

Umkehr Layer

Layer 6 Layer 7
SAGE-I SBUV SAGE LIMS SBUV SAGE LIMS

1 Sunrise (March 1979)

2 Sunset (March 1979)

3 Sunrise (April 1979)

4 Sunset (April i979)

4.5 6.3 2.6 2.4 4.2 4.6

2.8 3.1 1.6 3.8 2.8 4.0

5.1 3.7 1.3 2.9 1.5 3.7

3.8 3.6 1.2 2.8 1.4 3.4

Layer 8 Layer 9
SBUV SAGE LIMS SBUV SAGE LIMS

1 Sunrise (March 1979)

2 Sunset (March 1979)

3 Sunrise (April 1979)

4 Sunset (April 1979)

1.6 3.6 4.4 4.2 6.1 8.9

3.0 4.1 4.2 3.3 7.7 8.6

1.6 3.2 3.9 3.0 7.3 9.5

2.6 1.7 3.3 6.2 1.8 6.9

5.7 TRENDS AT UPPER BOUNDARY OF THE STRATOSPHERE (SBUV, SME, SMM)

5.7.1 SBUV Results

The SBUV instrument reports the largest percentage local ozone reduction at 50 km, the

upper boundary of the stratosphere (Figure 5.4), and the upper limit of direct information

content from SBUV (Chapter 3). Two satellite instruments have measured ozone in the meso-

sphere down to an altitude just above the upper limit of SBUV (Rusch et al., 1984; Aikin et al.,
1984; Aikin, private communication; 1987). Although these instruments do not cleanly overlap

SBUV, they provide evidence about ozone trends at the upper boundary of the SBUV region. The
time series data of these two instruments are examined here.

5.7.2 Solar Mesospheric Explorer

The Solar Mesospheric Explorer (SME) is described by Rusch et al. (1984) and in the

calibration and algorithm chapters of this report. The SME spacecraft measures ozone by means

of two instruments. The ultraviolet spectrometer (UVS) operates as an ultraviolet backscatter

instrument, as is the case with SBUV, but the SME UVS is used in a limb-viewing mode rather

than the nadir, as with the SBUV. The near-infrared spectrometer (NIRS) operates by limb

viewing the 1.27 p, airglow emission that arises from excited molecular oxygen produced during
ozone photodissociation. Ozone concentrations can be derived from the 1.27/_m emission.

Certain instruments on the SME are known to drift with time, and SME has onboard methods

for the indirect calibration of the drifting instruments (Chapter 3). In 1987, the SME team

reinterpreted and updated the SME data, including an analysis of the drift of the ultraviolet

spectrometer (Rusch and Clancy, 1988). The sensitivity of the upper channel of the ultraviolet
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spectrometer was judged to have decreased 4.8 _+ 1.37 percent per year. This correction and its
uncertainty affect the ozone trends, as indicated by both the UVS and the NIRS methods.

The ozone-mixing ratios as measured by the SME UVS ( + ) and the SBUV (*) at 1.0 mb in 1982

are shown as a function of latitude in Figure 5.31. The data are monthly averaged values for the

two instruments. The absolute values of the ozone-mixing ratio and the latitude dependence are

in agreement for most times and locations. The results agree generally within 10 percent.

Trends in ozone at 0.75 mb are evaluated from the SME data by both the airglow and infrared

methods. The trends are derived using average (0 ° to 60°N) ozone-mixing ratios from each

instrument for the first 2 weeks in June for the 5 years 1982-1986. The SME data are limited to the

June period, as processing for other times is not yet complete and the satellite attitude was

optimum in June. The trends, derived from the June data by use of a linear least-squares fit, are

1.57 percent per year for the UVS and 2.4 percent per year for the NIRS. The airglow results can

be evaluated by a method that is independent of the UVS and that relies only on the spacecraft
attitudes determined by the horizon sensors; this method gives an ozone increase of 1.8 percent

per year. By using the extremes (2o-) of the uncertainties in the UVS sensitivities in inverting the
data (4.8 + 1.37 percent per year), the range in the trends is shown in Figure 5.32. The values of

the ozone trends at the extremes of the sensitivity changes are -0.7 and + 4.1 percent per year.

These values from SME are inconsistent with the large ozone decreases displayed by SBUV in

Figures 5.3 and 5.4.
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5.7.3 Solar Maximum Mission

Ozone altitude profile data from 1984-1988 have been obtained by observing solar occultation

with the Ultraviolet Spectrometer Polarimeter (UVSP) on the Solar Maximum Mission (SMM)
spacecraft. Launch occurred in early 1980, and solar pointing was lost in late I980. In-orbit

spacecraft repairs were effected in 1984; operations have continued since that time. Details of the

instrument and its performance are described by Woodgate et al. (1980). The method of

obtaining ozone concentrations as a function of altitude is given by Aikin et al. (1984) and by

Aikin (private communication, 1987).

The SAGE instrumentation operates on the same solar occultation principle as the SMM

experiment, except that longer wavelengths are employed by SAGE. The altitude range of SAGE
is about 25 km to 60 km. Several SMM and SAGE profiles were compared; for example, see Figure

5.33. The concentration of ozone reported by SAGE-II is systematically neither higher or lower

than that of SMM (UVSP on the figure).

Figures 5.34 and 5.35 present the weekly mean ozone concentration at an altitude of 55 km

plotted as a function of time for the latitude of 20 ° north and south. Also shown as a histogram is
the total number of occultations included in each weekly mean. Since occultation observations

were interrupted for a variety of reasons, the data record is not continuous, and there is not a

uniform number of points in each sample. The SMM data show seasonal variations, but no
obvious trend.
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5.7.4 Conclusions

The body of ozone data taken by SME and SMM between 53 and 57 km supports the
conclusion by SAGE-I and -II that no large ozone decreases occurred at 50 km between 1979 and
1987.

5.8 ROCKET OZONESONDE (ROCOZ-A)

5.8.1 Introduction

The ROCOZ-A ozonesonde measures the solar ultraviolet irradiance over its four filter

wavelengths as the instrument descends on a parachute. The amount of ozone between the
ROCOZ-A radiometer and the Sun is calculated from the attenuation of solar flux as the

instrument falls, using the Beer-Lambert law. The fundamental measurement from ROCOZ-A

is ozone overburden (column amount) versus radar altitude from 20 km to 52 km. Aspects of
ROCOZ-A included in this section are discussed by Barnes and Simeth (1986) and Barnes et al.

(1986 and 1987), and in Chapter 2.

5.8.2 Estimates of the Accuracy of ROCOZ-A Ozone Profiles

The accuracy estimates for ROCOZ-A come from an internal, unpublished error analysis. A

laboratory flight simulator based on long-path-length photometry (DeMore and Patapoff, 1976)

has been constructed to calibrate ROCOZ-A ozone readings. The accuracy of the ozone column

amounts and ozone number densities from ROCOZ-A, including auxiliary pressure and
temperature measurements, has been estimated at 6 to 8 percent.

5.8.3 Comparison With In Situ Instruments

ROCOZ-A ozone measurements have been compared with those from an in situ UV

absorption photometer during the Balloon Ozone Intercomparison Campaign (BOIC) (Hilsen-

rathet al., 1986). In one comparison, ROCOZ-A measured 5 to 10 percent higher than the in situ

photometer for atmospheric pressures between 50 mb and 4 mb. In a subsequent balloon flight

spanning 6 mb to 2 mb, a ROCOZ-A ozonesonde was compared with the same photometer and

with a mass spectrometer from the University of Michigan (Anderson and Mauersberger, 1981);
ROCOZ-A read higher than the in situ photometer by 8 percent and lower than the mass

spectrometer by 4 percent. There is cause for concern in this intercomparison, since the in situ

photometer and the mass spectrometer are both considered to be absolute instruments.

Hilsenrath et al. (1986) report laboratory comparisons of in situ photometers during BOIC.

There is good agreement between the photometers flown on BOIC and similar agreement

between the photometers and the ozone standard instrument from NBS. There is strong

evidence to support the quality of the ozone measurements from the in situ photometers in
BOIC.

On the other hand, there is a series of high-quality laboratory results with the Minnesota

mass spectrometer. Hanson and Mauersberger (1985 and 1986) have used the mass spectrometer

to study the vapor pressure of ozone at liquid argon temperatures. Mauersberger et al. (1987)
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used long-path photometry to show 0.5 percent agreement between the thermodynamic vapor

pressure standard and the ozone cross-section at 253.65 nm.

5.8.4 Ozone Measurements at Natal, Brazil

In the late 1970's and early 1980's, satellite measurements of the equa-torial stratosphere and
mesosphere showed low variability in ozone during the Southern Hemisphere autumn (Fred-

erick et al., 1984; McPeters et al., 1984; Rusch et al., 1984). In March and April 1985, NASA and

the Brazilian space agency (INPE) conducted a series of ozone soundings at Natal, Brazil. The

measurements were made in conjunction with over-passes of the SME, the SAGE-II instrument

on the Earth Radiation Budget Satellite, and the SBUV spectrometers on Nimbus-7 and

NOAA-9. Seven series of flights were conducted from March 25 to April 15, 1985, producing

atmospheric profiles of ozone, pressure, and temperature from the ground to 52 km (Barnes,

1988). Above 22 kin, stratospheric ozone variability was 2 percent or less during the 3 weeks of

the measurement campaign, with stratospheric tempera-ture and pressure variabilities half that
amount.

5.8.5 Estimates of Instrument Repeatabilities, an Upper Limit on Their Imprecision

The 2 percent variability in upper stratospheric ozone at Natal, Brazil, for 3 weeks in March

and April 1985 implies a comparable uniformity for ozone profiles over a large area around the

measurement site. This condition removes the requirement of exact concurrence between

satellite and in situ ozone measurements, allowing comparisons of larger data sets. For
ROCOZ-A, the sample at Natal includes seven profiles from March 25 to April 15, 1985. For

SBUV, the samples were taken from March 20 to April 19, with 32 profiles in 1979 and 38 profiles

in 1985. All of the SBUV measurements were within 2 degrees in latitude and 24 degrees in

longitude from Natal. For SAGE-II, the sample set includes 14 measurements from March 22 to

April 17, 1985. Each SAGE-II profile is within 12 degrees in latitude and 15 degrees in longitude

from Natal. The sampling area for SAGE-II reflects its more sparse spatial coverage, when

compared with SBUV. The SAGE-I samples from 1979 are similar to those from SAGE-II in

number and coverage, both in time and space. The LIMS measurements were taken from March
17 to April 20, 1979, and cover the latitude range from the Equator to 8°S latitude. The selection of

LIMS, SBUV, SAGE-I, and SAGE-II data from the archives for this comparison with ROCOZ-A

is described by Barnes et al. (1987).

The instrument comparisons are presented in terms of ozone amounts within Umkehr layers,

the nominal primary product from the standard SBUV algorithm. For ROCOZ-A, both SAGE

instruments, and LIMS, conversion to this form requires a significant change in units as well as

independent knowledge of the temperature and pressure fields. Table 5.11 presents the ozone
columns in Umkehr layers 6 to 9 as found by SBUV, SAGE-I, and LIMS in 1979 and as found by

SBUV, SAGE-II, and ROCOZ-A in 1985. The reproducibility of each instrument is given by the

standard deviations reported in Table 5.I1, except that this figure includes any atmospheric

variability, which for SAGE observations includes latitudinal variations over about a 12-degree

range. The single layer reproducibilities vary from 1.4 to 7.3 percent, and the average of the 24

cases is 3.3 percent. These measures of reproducibility may be interpreted as an upper limit of the

imprecision of the various instruments. The standard deviations of the means, involving from 6

to 38 profiles among the various instruments, are mostly less than I percent, and all are less than
2 percent. This high reproducibility of the individual systems suggests that most discrepancies

reported between different instruments are due to systematic errors of the systems.
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Table 5.11 Reproducibility of Satellite and Rocket Systems in Measuring Upper Stratospheric
Ozone Near Natal, Brazil, During Periods of Atmospheric Stability in 1979 and 1985

Umkehr Ozone Layer or% Sample cr of
Layer Amount (a) (b) Size Mean %

SBUV (1979)

9 7.96(16) (c) 1.8 32 0.32
8 2.62(17) 1.4 0.24

7 7.60(17) 1.4 0.25

6 1.56(18) 2.5 0.44

SAGE-I (1979)

9 8.62(16) 6.1 13 1.54

8 2.76(17) 6.2 0.88
7 7.66(17) 7.1 1.26

6 1.74(18) 4.1 1.25

LIMS (1979)

9 7.89(16) 1.9 30 0.34

8 2.64(17) 2.2 0.41
7 7.22(17) 3.0 0.54

6 1.70(18) 1.7 0.29

SBUV (1985)

9 7.12(18) 1.7 38 0.27
8 2.58(17) 2.6 0.42

7 7.74(17) 2.2 0.36

6 1.58(18) 3.6 0.58

SAGE-II (1985)

9 7.84(16) 7.3 14 1.96

8 2.89(17) 4.3 1.16
7 8.10(17) 3.4 0.92

6 1.68(18) 2.0 0.53

ROCOZ-A (1985)

9 8.59(16) 1.9 6 0.78

8 2.92(17) 4.4 1.79
7 8.19(17) 3.9 1.49

6 1.67(18) 2.5 0.93

(a) Molecules cm -2 over Umkehr layer. (b) Relative standard deviation. (c) Read 7.96(16) as 7.96 x 1016, etc.
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Using the same data as in Table 5.11, an estimate of how much the individual instruments
differ from each other is obtained; the average deviations of three instruments from their own

average value are given in Table 5.12 for 1979 and 1985. These instruments, with the uniform

atmosphere near Natal and the good reproducibility shown in Table 5.11, give an instrument-to-

instrument variability of 4 or 5 percent.

Table 5.12 Replication of Upper Stratospheric Ozone by Sets of Three Instruments*

The average of the three instruments and the standard deviation of the three instruments from

the average.
Umkehr 1979 Average cr 1985 Average cr

Layer Layer Amount (a) % Layer Amount (a) %

9 8.16(16) 5.0 7.85(16) 9.4

8 2.67(17) 2.8 2.80(17) 6.6

7 7.49(17) 3.2 8.01(17) 3.0

6 1.67(18) 5.8 1.64(18) 3.1

Average 4.2 Average 5.5

*Compare Table 5.11.

(a) Molecules cm "2 over Umkehr layer.

5.8.6 Comparison of SAGE-II and SBUV With ROCOZ-A Ozone Vertical Profiles

The composite ozone vertical profile obtained by ROCOZ-A and by chemical ozonesondes at

Natal in spring 1985 (Barnes et al., 1987) is presented in terms of ozone concentration as a

function of geometric altitude in Figure 5.36. The profiles of the percentage difference between
ROCOZ-A and the ozone vertical profiles given by SBUV and by SAGE-II overflights are

included in the figure. The comparisons are made in terms of the primary data from the

respective satellite instruments. SAGE-II provides ozone concentrations versus altitude. Be-
tween 25 and 50 km, the differences, SAGE minus ROCOZ-A, are sometimes positive and

sometimes negative, with an average of about -1 percent, and never exceeding 5 percent. The
ROCOZ-A ozone data are translated into columns over Umkehr layers, and the difference,

SBUV minus ROCOZ-A, is included on the figure. For Umkehr layers 6, 7, 8, and 9, the

differences are all negative; that is, SBUV values are less than those of ROCOZ-A. The

differences are 18 percent at layer 9 and 5 percent at layer 6.

5.8.7 Discussion of Instrument Comparisons Given in Sections 5.6, 5.7, and 5.8

The 12 percent difference between stratospheric ozone measurements from the Minnesota

mass spectrometer and the ultraviolet spectrometers flown in the BOIC (Section 5.8.3) gives rise

to the following speculation: there may be some unrecognized atmospheric optical effects that

perturb ozone measurements by some of the remote sensing instruments. For example, nitric
oxide fluorescence near 255 nm is known to overlap one of the SBUV lines, but such fluorescence

lines, which are observed in the laboratory with decreasing intensity at intervals up to about 390

nm, might also cause variations in apparent ozone in some instruments. Other unrecognized

atmospheric fluorescence or absorptions may be occurring.

The data in Section 5.6 give an example of how closely three totally different, newly launched

satellite systems agree with each other over a 6-month period in measuring zonal mean ozone
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Figure 5.36 Average ozone vertical profile based on ROCOZ-A and chemical ozonesondes at Natal,

Brazil, in March and April 1985. Middle panel: SAGE-II minus ROCOZ-A, vertical profile of ozone percentage
difference at Natal in 1985 as a function of geometrical altitude. Right panel: SBUV minus ROCOZ-A, vertical
profile of ozone percentage difference at Natal in 1985 at Umkehr layers and as a function of pressure.

amounts in the four Umkehr layers in the middle to upper stratosphere (about 4 percent). For a

2-year period, the zonal average ozone values over four Umkehr layers for the newly launched

SBUV and SAGE-I instruments agreed within about 4 percent from 60°N to 60°S (Figure 5.13). In

the relatively uniform and slowly changing tropical stratosphere, two sets of three-way instru-

ment comparisons (Section 5.8.5) showed the average deviations of each instrument from the

average of the three to be about 5 percent. By extension, one is led to believe that the ability of

current satellite systems to measure the absolute value of ozone in the upper stratosphere is not

much better than about 4 percent. By further extension, it is difficult to believe that presently

available remote sensing satellites can reliably detect changes in upper stratospheric ozone of

much less than 4 percent.

5.9 CONCLUSIONS

From an examination of the agreements and differences between different satellite instru-

ments (Sections 5.3.5.6, 5.7, and 5.8), it is difficult to believe that existing satellite instruments

determine upper stratospheric ozone much better than 4 percent; by extension, it probably

would require at least a 4 percent change to be reliably detected as a change.

The best estimates of the vertical profiles of ozone change in the upper stratosphere between

1979 and 1986 are judged to be those given by the two SAGE satellite instruments.
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SAGE-II minus SAGE-I gives a much lower ozone reduction than that given by the

archived SBUV data; for example, at temperate latitudes and at 40 km, SBUV gives 15

percent and SAGE gives 3 percent. With added considerations from Chapters 2 and 3, the

difference is largely ascribed to systematic error in the treatment of the SBUV diffuser plate.

The average SAGE profiles of ozone changes between 20 and 50 degrees north and between

20 and 50 degrees south are given by Figure 5.18. The altitude of maximum ozone

reduction is 40 km, in agreement with atmospheric models. The magnitude of maximum
ozone reduction is 3 - 3 percent (95 percent confidence level) at 40 km. The central value of
this ozone reduction is less than the consensus of current theoretical models; a set of

different models gives ozone reductions that range from 5 to 12 percent at an altitude near

40 km (Chapter 7). The relative systematic error between SAGE-I and -II is estimated to be 2

percent (see Chapter 2); an error estimate for the models is not available.

The SAGE-I and -II comparison gives an ozone reduction of about 4 percent at 25 km over

temperate latitudes. This altitude is near the ozone concentration maximum, and this ozone
change represents a much larger reductionof the ozone column than that given at 40 kin.

This observed ozone change at 25 km is larger than that given by theoretical models, and

future studies should concentrate on the reality and explanation of this ozone reduction (for

example, is it a weak manifestation of the features that give the large Antarctic ozone

reduction?).

Five ground-based Umkehr stations between 36 and 52 degrees north, corrected for the

effects of volcanic aerosols, report an ozone reduction between 1979 and 1987 at Umkehr layer 8

of 9 + 5 percent (95 percent confidence level, including a term for uncertainty in the aerosol
correction, but not including possible systematic errors). The central estimate of upper strato-

spheric ozone reduction given by SAGE at 40 km is less than the central value estimated by the

Umkehr method at layer 8.

In the future, the best way to improve knowledge of ozone profile changes between 1979 and

1987 will be to compare the first 2 years of validated SBUV-2 data against seasonally matched 2

years of the early SBUV data, similar to the procedure used by SAGE-I and -II.

To measure upper stratospheric ozone changes as small as 5 percent in 10 years, the
instrument operators and data interpreters must have an extremely high level of ability,

sophistication, dedication, and financial support. Such a measurement is a formidable scientific

and engineering challenge. It requires continual attention to instrument performance, cal-

ibration, and verification; there needs to be a large number of duplicate, overlapping measure-

ments. This task will not be achieved if it is regarded as a routine monitoring operation.
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